Last active
December 22, 2022 10:09
-
-
Save limitedeternity/f7d7e588ecb51c20d4657ba633f621a3 to your computer and use it in GitHub Desktop.
"Bitwise hacks" proofs
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Require Import Coq.Init.Nat Coq.Arith.PeanoNat Coq.Numbers.NatInt.NZPow Coq.Numbers.NatInt.NZBits Lia. | |
Theorem shiftr_div_pow2 : forall (a n : nat), | |
shiftr a n = a / 2 ^ n. | |
Proof. | |
intros. Nat.bitwise. rewrite Nat.shiftr_spec'. symmetry. apply Nat.div_pow2_bits. | |
Qed. | |
Lemma shiftl_mul_pow2 : forall (a n : nat), | |
shiftl a n = a * 2 ^ n. | |
Proof. | |
intros. Nat.bitwise. destruct (Nat.le_gt_cases n m) as [H | H]. | |
- now rewrite Nat.shiftl_spec_high', Nat.mul_pow2_bits_high. | |
- now rewrite Nat.shiftl_spec_low, Nat.mul_pow2_bits_low. | |
Qed. | |
Theorem pow2_check : forall (n : nat), | |
land (2 ^ n) (2 ^ n - 1) = 0. | |
Proof. | |
intros. replace (2 ^ n - 1) with (pred (2 ^ n)) by lia. | |
rewrite <- Nat.ones_equiv. rewrite Nat.land_ones. | |
rewrite Nat.mod_same. | |
- reflexivity. | |
- rewrite Nat.neq_0_lt_0. induction n; simpl; lia. | |
Qed. | |
Theorem modulo_pow2 : forall (a n : nat), | |
a mod 2 ^ n = land a (2 ^ n - 1). | |
Proof. | |
intros. replace (2 ^ n - 1) with (pred (2 ^ n)) by lia. rewrite <- Nat.ones_equiv. | |
now rewrite Nat.land_ones. | |
Qed. |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment