Last active
October 1, 2017 15:11
-
-
Save linwoodc3/0e9e2b173ec47c677a28bb3664431ebf to your computer and use it in GitHub Desktop.
Python code to create geodataframe for countries, lakes, and oceans for geospatial analysis in Python. Use geopandas and Python 2 or download the
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#Author: Linwood Creekmore | |
#Date: October 1, 2017 | |
# Instructions: | |
""" | |
Download and use my shapefilereader function in Python 2 OR just download the linked zip to your computer and read using geopandas | |
gist to shapefilereader - > https://gist.github.com/linwoodc3/72b2f24b6d2ff6ffde1597f1ca2dea3f | |
""" | |
from shapefilereader import shapefilereader # get shapefilereader from link above and make sure you're using Python 2 | |
import pandas as pd | |
# continents | |
gdf = shapefilereader('http://thematicmapping.org/downloads/TM_WORLD_BORDERS-0.3.zip').to_crs({'init':'epsg:3857'}) | |
# primary lakes shapefile | |
lakes = shapefilereader('http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/physical/ne_10m_lakes.zip') | |
lakes = lakes.fillna(np.nan)\ | |
.assign(name=np.where(lakes['name'].isnull(),lakes['note'],lakes['name'])) | |
# north american lakes supplement | |
lakes2 = shapefilereader('http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/physical/ne_10m_lakes_north_america.zip') | |
lakes2 = lakes2.fillna(np.nan)\ | |
.assign(name=np.where(lakes2['name'].isnull(),lakes2['note'],lakes2['name'])) | |
# european lakes supplement | |
lakes3 = shapefilereader('http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/physical/ne_10m_lakes_europe.zip') | |
lakes3 = lakes3.fillna(np.nan)\ | |
.assign(name=np.where(lakes3['name'].isnull(),lakes3['note'],lakes3['name'])) | |
# combining all lakes into one single lake file, drop duplicates using supplement data over original | |
lakes = pd.concat([pd.concat([lakes,lakes2]).drop_duplicates('name',keep='last'),lakes3]).\ | |
drop_duplicates(subset=['name','featurecla'],keep='last')[['name','geometry','featurecla']] | |
# oceans and seas shapefile | |
oceans = shapefilereader('/Users/linwood/projects/Blogs/drafts/geolocated_social_transcends_political_barriers/data/World_Seas_IHO_v2.zip') | |
oceans = oceans.assign(featurecla = 'Ocean')[['NAME','geometry','featurecla']]\ | |
.rename(columns={'NAME':'name'}) | |
# creating one single bodies of water file | |
bodiesOfWater = pd.concat([oceans,lakes]) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment