Last active
August 29, 2015 14:19
-
-
Save liorean/0a42ecd92abf89931198 to your computer and use it in GitHub Desktop.
Experiments with memoization, using ECMAScript 2015 (ES6) fat arrow function syntax. fix is a variant of the applicative order fix point combinator (Y), memo is a memoization function for functions of a single argument that recurse using an external name, and fixmemo is a merging of the two into a memoizing fix point combinator for functions of …
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/* Some experiments for memoization functions on Fibonacci sequence. */ | |
/* This uses the SpiderMonkey JS Shell functions print and dateNow for its output. */ | |
let | |
fix= | |
f=>( | |
(f=>f(f)) | |
(g=>f((...a)=>g(g)(...a)))), | |
memo= | |
f=>( | |
(map=>a=>( | |
map.has(a) | |
?map.get(a) | |
:map.set(a,f(a)).get(a))) | |
(new Map)), | |
fixmemo = | |
f=>( | |
(map=>fix( | |
z=>a=>( | |
map.has(a) | |
?map.get(a) | |
:map.set(a,f(b=>z(b))(a)).get(a)))) | |
(new Map)), | |
memocurried= | |
((m=>fix( | |
z=>f=>l=>( | |
m((0<l?z(f)(l-1):f))))) | |
(memo)), | |
time= | |
f=>( | |
(n=>[f(),dateNow()-n]) | |
(dateNow())), | |
memfib= | |
memo( | |
n=>( | |
n===0 | |
?0 | |
:n===1 | |
?1 | |
:memfib(n-1)+memfib(n-2))), | |
memofib=( | |
memocurried( | |
n=>( | |
n===0 | |
?0 | |
:n===1 | |
?1 | |
:(memofib(n-1)+memofib(n-2)))) | |
(1)), | |
fmfib= | |
fixmemo( | |
fib=>n=>( | |
n===0 | |
?0 | |
:n===1 | |
?1 | |
:fib(n-1)+fib(n-2))), | |
Fibonacci= | |
fix( | |
fib=>n=>( | |
n===0 | |
?0 | |
:n===1 | |
?1 | |
:fib(n-1)+fib(n-2))), | |
recfromcorec=( | |
(f,...a) => fix( | |
z => n => ( | |
a.length > n | |
? a[n] | |
: (a[a.length]=f(),z(n))))), | |
cofibs= | |
(m=0,n=1,o)=>( | |
()=>( | |
[m,n,o]=[n,m+n,m], | |
o)), | |
fibco=recfromcorec(cofibs()), | |
fdfib=( | |
(f=>n=>( | |
n<0 | |
?(()=>{throw 'Fibonacci takes a positive integral argument.'})() | |
:f(n)[0])) | |
(fix( | |
z=>n=>( | |
n===0 | |
?[0,1] | |
:( | |
(([a,b])=>( | |
((c,d)=>( | |
n%2===0 | |
?[c,d] | |
:[d,c+d])) | |
(a*(b*2-a),a*a+b*b))) | |
(z(Math.floor(n/2)))))))) | |
; | |
print( | |
'Unmemoized: fib(0x20):\n\t', | |
time(()=>Fibonacci(0x20)),'\n\t', | |
time(()=>Fibonacci(0x20))); | |
print( | |
'Memoized: fib(0x20):\n\t', | |
time(()=>memfib(0x20)),'\n\t', | |
time(()=>memfib(0x20))); | |
print( | |
'Curry memoized: fib(0x20):\n\t', | |
time(()=>memofib(0x20)),'\n\t', | |
time(()=>memofib(0x20))); | |
print( | |
'Fixmemoized: fib(0x20):\n\t', | |
time(()=>fmfib(0x20)),'\n\t', | |
time(()=>fmfib(0x20))); | |
print( | |
'Corecursion: fib(0x20):\n\t', | |
time(()=>fibco(0x20)),'\n\t', | |
time(()=>fibco(0x20))); | |
print( | |
'Fast Doubling Fibbonacci algorithm: fib(0x20):\n\t', | |
time(()=>fdfib(0x20)),'\n\t', | |
time(()=>fdfib(0x20))); | |
print( | |
'Memoized: fib(0x40):\n\t', | |
time(()=>memfib(0x40)),'\n\t', | |
time(()=>memfib(0x40))); | |
print( | |
'Curry memoized: fib(0x40):\n\t', | |
time(()=>memofib(0x40)),'\n\t', | |
time(()=>memofib(0x40))); | |
print( | |
'Fixmemoized: fib(0x40):\n\t', | |
time(()=>fmfib(0x40)),'\n\t', | |
time(()=>fmfib(0x40))); | |
print( | |
'Corecursion: fib(0x40):\n\t', | |
time(()=>fibco(0x40)),'\n\t', | |
time(()=>fibco(0x40))); | |
print( | |
'Fast Doubling Fibbonacci algorithm: fib(0x40):\n\t', | |
time(()=>fdfib(0x40)),'\n\t', | |
time(()=>fdfib(0x40))); | |
print( | |
'Memoized: fib(0x400):\n\t', | |
time(()=>memfib(0x400)),'\n\t', | |
time(()=>memfib(0x400))); | |
print( | |
'Curry memoized: fib(0x400):\n\t', | |
time(()=>memofib(0x400)),'\n\t', | |
time(()=>memofib(0x400))); | |
print( | |
'Fixmemoized: fib(0x400):\n\t', | |
time(()=>fmfib(0x400)),'\n\t', | |
time(()=>fmfib(0x400))); | |
print( | |
'Corecursion: fib(0x400):\n\t', | |
time(()=>fibco(0x400)),'\n\t', | |
time(()=>fibco(0x400))); | |
print( | |
'Fast Doubling Fibbonacci algorithm: fib(0x400):\n\t', | |
time(()=>fdfib(0x400)),'\n\t', | |
time(()=>fdfib(0x400))); | |
print( | |
'Memoized: fib(0x800):\n\t', | |
time(()=>memfib(0x800)),'\n\t', | |
time(()=>memfib(0x800))); | |
print( | |
'Curry memoized: fib(0x800):\n\t', | |
time(()=>memofib(0x800)),'\n\t', | |
time(()=>memofib(0x800))); | |
print( | |
'Fixmemoized: fib(0x800):\n\t', | |
time(()=>fmfib(0x800)),'\n\t', | |
time(()=>fmfib(0x800))); | |
print( | |
'Corecursion: fib(0x800):\n\t', | |
time(()=>fibco(0x800)),'\n\t', | |
time(()=>fibco(0x800))); | |
print( | |
'Fast Doubling Fibbonacci algorithm: fib(0x800):\n\t', | |
time(()=>fdfib(0x800)),'\n\t', | |
time(()=>fdfib(0x800))); | |
print( | |
'Memoized: fib(0x1000):\n\t', | |
time(()=>memfib(0x1000)),'\n\t', | |
time(()=>memfib(0x1000))); | |
print( | |
'Curry memoized: fib(0x1000):\n\t', | |
time(()=>memofib(0x1000)),'\n\t', | |
time(()=>memofib(0x1000))) | |
print( | |
'Fixmemoized: fib(0x1000):\n\t', | |
time(()=>fmfib(0x1000)),'\n\t', | |
time(()=>fmfib(0x1000))); | |
print( | |
'Corecursion: fib(0x1000):\n\t', | |
time(()=>fibco(0x1000)),'\n\t', | |
time(()=>fibco(0x1000))); | |
print( | |
'Fast Doubling Fibbonacci algorithm: fib(0x1000):\n\t', | |
time(()=>fdfib(0x1000)),'\n\t', | |
time(()=>fdfib(0x1000))); | |
/* RESULTS: | |
Unmemoized: fib(0x20): | |
2178309,13702.607177734375 | |
2178309,14864.7529296875 | |
Memoized: fib(0x20): | |
2178309,0.52783203125 | |
2178309,0.008056640625 | |
Curry memoized: fib(0x20): | |
2178309,0.2958984375 | |
2178309,0.0048828125 | |
Fixmemoized: fib(0x20): | |
2178309,36.14892578125 | |
2178309,0.0048828125 | |
Corecursion: fib(0x20): | |
2178309,0.6240234375 | |
2178309,0.0048828125 | |
Fast Doubling Fibbonacci algorithm: fib(0x20): | |
2178309,0.281982421875 | |
2178309,0.575927734375 | |
Memoized: fib(0x40): | |
10610209857723,0.310791015625 | |
10610209857723,0.005859375 | |
Curry memoized: fib(0x40): | |
10610209857723,0.154052734375 | |
10610209857723,0.0048828125 | |
Fixmemoized: fib(0x40): | |
10610209857723,0.380126953125 | |
10610209857723,0.076171875 | |
Corecursion: fib(0x40): | |
10610209857723,0.27685546875 | |
10610209857723,0.006103515625 | |
Fast Doubling Fibbonacci algorithm: fib(0x40): | |
10610209857723,0.14306640625 | |
10610209857723,0.078125 | |
Memoized: fib(0x400): | |
4.506699633677816e+213,2.569091796875 | |
4.506699633677816e+213,0.015869140625 | |
Curry memoized: fib(0x400): | |
4.506699633677816e+213,0.67919921875 | |
4.506699633677816e+213,0.008056640625 | |
Fixmemoized: fib(0x400): | |
4.506699633677816e+213,12.121826171875 | |
4.506699633677816e+213,0.01611328125 | |
Corecursion: fib(0x400): | |
4.506699633677816e+213,12.364990234375 | |
4.506699633677816e+213,0.010986328125 | |
Fast Doubling Fibbonacci algorithm: fib(0x400): | |
4.506699633677817e+213,0.1259765625 | |
4.506699633677817e+213,0.136962890625 | |
Memoized: fib(0x800): | |
Infinity,0.322998046875 | |
Infinity,0.00390625 | |
Curry memoized: fib(0x800): | |
Infinity,0.906982421875 | |
Infinity,0.01318359375 | |
Fixmemoized: fib(0x800): | |
Infinity,6.6689453125 | |
Infinity,0.011962890625 | |
Corecursion: fib(0x800): | |
Infinity,1.593994140625 | |
Infinity,0.0068359375 | |
Fast Doubling Fibbonacci algorithm: fib(0x800): | |
Infinity,0.0869140625 | |
Infinity,0.06689453125 | |
Memoized: fib(0x1000): | |
Infinity,0.658935546875 | |
Infinity,0.006103515625 | |
Curry memoized: fib(0x1000): | |
Infinity,1.137939453125 | |
Infinity,0.006103515625 | |
Fixmemoized: fib(0x1000): | |
Infinity,11.991943359375 | |
Infinity,0.012939453125 | |
Corecursion: fib(0x1000): | |
Infinity,3.60107421875 | |
Infinity,0.012939453125 | |
Fast Doubling Fibbonacci algorithm: fib(0x1000): | |
NaN,0.10205078125 | |
NaN,0.0791015625 | |
*/ |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment