Created
March 17, 2020 21:43
-
-
Save liorshk/20f23cfbed099dc902db34b69799d7e5 to your computer and use it in GitHub Desktop.
Create an Argo Pipeline YAML using Kubeflow pipelines SDK
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import kfp | |
@kfp.components.func_to_container_op | |
def print_func(param: int): | |
print(str(param)) | |
@kfp.components.func_to_container_op | |
def list_func(param: int) -> list: | |
return list(range(param)) | |
@kfp.dsl.pipeline(name='pipeline') | |
def pipeline(param: int): | |
list_func_op = list_func(param) | |
with kfp.dsl.ParallelFor(list_func_op.output) as param: | |
print_func(param) | |
if __name__ == '__main__': | |
artifact_location = ArtifactLocation.s3( | |
bucket="__argo_bucket_name__", | |
endpoint="s3.amazonaws.com", | |
region="us-west-2", | |
insecure = False, | |
access_key_secret=V1SecretKeySelector(name="__secret_name__", key="aws-access-key-id"), | |
secret_key_secret=V1SecretKeySelector(name="__secret_name__", key="aws-secret-access-key")) | |
# config pipeline level artifact location | |
conf = dsl.PipelineConf() | |
conf = conf.set_artifact_location(artifact_location) | |
workflow_dict = kfp.compiler.Compiler()._create_workflow(pipeline,pipeline_conf=conf) | |
workflow_dict['metadata']['namespace'] = "default" | |
del workflow_dict['spec']['serviceAccountName'] | |
kfp.compiler.Compiler._write_workflow(workflow_dict, "pipe.yaml") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment