Created
October 22, 2025 22:03
-
-
Save liquidcarbon/d4568fe0abd1c38b9866e014c7d09049 to your computer and use it in GitHub Desktop.
groupby-stats - custom "describe" for pandas dataframe groupby
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import numpy as np | |
| import pandas as pd | |
| def stats(self, cols, funcs=None): | |
| """ | |
| Like describe(), but allows custom stats and outputs flat columns like 'x-50', 'x-mean', etc. | |
| Parameters | |
| ---------- | |
| cols : list | None | |
| List of columns to aggregate. | |
| funcs : list | None | |
| List of statistics to compute. | |
| Can include: | |
| - strings (e.g. "mean", "std", "median") | |
| - numbers (treated as percentiles) | |
| - callables | |
| Default: [50, np.mean, "std"] | |
| """ | |
| if funcs is None: | |
| funcs = [50, np.mean, np.std] | |
| funcs_labels = [] | |
| for fn in funcs: | |
| if isinstance(fn, (int, float)): # percentile | |
| label = f"{fn:g}" | |
| funcs_labels.append((lambda x, q = fn: np.percentile(x, q), label)) | |
| elif callable(fn): | |
| funcs_labels.append((fn, fn.__name__)) | |
| else: | |
| raise TypeError(f"Unsupported stat type: {type(fn)}") | |
| result = {} | |
| for col in cols: | |
| for fn, label in funcs_labels: | |
| result[f"{col}-{label}"] = self[col].apply(fn) | |
| result = pd.DataFrame(result, index=self.groups.keys()) | |
| return result | |
| pd.core.groupby.generic.DataFrameGroupBy.stats = stats |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment