Last active
August 13, 2017 00:26
-
-
Save lirnli/ba5183357b5f70964b36e2cd49337530 to your computer and use it in GitHub Desktop.
CartPole-v0 Q-learning
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
## A simple Q-learning net with memory relay | |
import numpy as np | |
import tensorflow as tf | |
from matplotlib import pyplot as plt | |
import gym | |
# Get env parameters | |
GYM_NAME = 'CartPole-v0' | |
env = gym.make(GYM_NAME) | |
obs_shape = env.observation_space.shape | |
n_action = env.action_space.n | |
env.close() | |
# a function to create net | |
def create_q_net(X, name=None): | |
with tf.variable_scope(name) as scope: | |
he_init = tf.contrib.layers.variance_scaling_initializer() | |
xavier_init=tf.contrib.layers.xavier_initializer() | |
# X = tf.placeholder(tf.float32, shape=(None,)+obs_shape) | |
dense1 = tf.layers.dense(X,20,kernel_initializer=he_init, activation=tf.nn.elu) | |
# dense1 = tf.layers.dense(X,20,activation=tf.nn.elu) | |
# dense2 = tf.layers.dense(dense1,10,kernel_initializer=he_init, activation=tf.nn.elu) # not used | |
q_net = tf.layers.dense(dense1, n_action, kernel_initializer=xavier_init) | |
trainable_vars = {var.name[len(scope.name):]: var for var in tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope=scope.name)} | |
return q_net, trainable_vars | |
tf.reset_default_graph() | |
X = tf.placeholder(tf.float32, shape=(None,)+obs_shape) | |
q_net, _ = create_q_net(X, name='q_network') | |
from collections import deque # use deque as memory relay | |
# parameters to be tuned | |
learning_rate = 0.001 | |
gamma = 0.999 | |
memory_cap = 1000 | |
max_iteration= 100000 | |
batch_size = 100 | |
n_step = 1 | |
memory_warmup_size = memory_cap | |
# optimization tensors. One step algorithm | |
action_ph = tf.placeholder(tf.int32, shape=[None,]) | |
qn_ph = tf.placeholder(tf.float32, shape=[None,]) | |
q0 = tf.reduce_sum(q_net*tf.one_hot(action_ph,n_action),axis=1) | |
loss = tf.reshape(tf.squared_difference(q0,qn_ph),[-1,1]) #CHANGED | |
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate) | |
train_op = optimizer.minimize(loss) | |
# sample new action, borrowed from handson-ml | |
def epsilon_greedy(q_net_val, step): | |
eps_min = 0.05 | |
eps_max = 1.0 | |
eps_decay_steps = 50000 | |
# epsilon = eps_min + step/eps_decay_steps*(eps_max-eps_min) | |
epsilon = max(eps_min, eps_max - (eps_max-eps_min) * step/eps_decay_steps) | |
if np.random.rand() < epsilon: | |
return np.random.randint(n_action) | |
return np.argmax(q_net_val) | |
# this function test the net with a new env | |
def check_model(): | |
import time | |
env = gym.make('CartPole-v0') | |
obs = env.reset() | |
step = 0 | |
while True: | |
q_net_val = q_net.eval(feed_dict={X: np.reshape(obs,[-1,4])}) | |
curr_action = epsilon_greedy(q_net_val,max_iteration) | |
env.render() | |
# time.sleep(0.1) | |
obs, _,done,_ = env.step(curr_action) | |
step += 1 | |
if done: | |
break | |
env.close() | |
return step | |
# prepare training | |
init = tf.global_variables_initializer() | |
env = gym.make(GYM_NAME) | |
from gym import wrappers | |
env = wrappers.Monitor(env,'./tmp/',force=True) | |
prev_obs = env.reset() | |
prev_action = env.action_space.sample() | |
memory = deque(maxlen=memory_cap) | |
iteration = 0 | |
episode = 0 | |
train_step = 0 | |
# start training | |
config = tf.ConfigProto(inter_op_parallelism_threads=1, intra_op_parallelism_threads=1) | |
with tf.Session(config=config) as sess: | |
init.run() | |
while train_step < 100000: | |
print('\riteration {}, episode = {}, train_step {}'.format(iteration, episode, train_step),end='') | |
obs, reward, done, _ = env.step(prev_action) | |
q_net_val = q_net.eval(feed_dict = {X: np.expand_dims(obs,0)}) | |
memory.append([prev_obs, prev_action, reward, np.max(q_net_val),done]) # save state | |
prev_obs, prev_action = obs, epsilon_greedy(q_net_val, train_step) | |
if iteration > memory_warmup_size: # make sure there are enough states in memory | |
idx = np.random.permutation(len(memory)-1)[:batch_size] | |
X_batch = np.array([memory[b][0] for b in idx]) | |
action_batch = np.array([memory[b][1] for b in idx]) | |
reward_batch = np.array([memory[b][2] for b in idx]) | |
q_batch = np.array([memory[b][3] for b in idx]) | |
done_batch = np.array([memory[b][4] for b in idx]) | |
qn_batch = reward_batch+(~done_batch)*q_batch*gamma | |
train_op.run(feed_dict = {X:X_batch, action_ph:action_batch, qn_ph:qn_batch}) | |
train_step += 1 | |
if done: # handles end of a env | |
prev_obs = env.reset() | |
episode += 1 | |
if episode%100==0: | |
check_model() | |
iteration += 1 | |
env.close() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment