Created
December 8, 2021 07:13
-
-
Save lispandfound/2c7565141aa87717d4f5c12300aed1d7 to your computer and use it in GitHub Desktop.
Experiments
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
LoadPackage("fining"); | |
e := 3; | |
q := 2 ^ e; | |
aut := 2^((e + 1) / 2); | |
pg := PG(2, q^2); | |
F := GF(q); | |
Ex := GF(q^2); | |
w := Z(q^2); | |
params := Cartesian(Elements(F), Elements(F), Elements(F)); | |
UnitalPoint := function(p) | |
local r, s, t; | |
r := p[1]; | |
s := p[2]; | |
t := p[3]; | |
return VectorSpaceToElement(pg, [s^(aut + 2) + t^aut + s*t + r*w, t + s*w, One(Ex)]); | |
end; | |
U := Concatenation([VectorSpaceToElement(pg, [One(Ex), Zero(Ex), Zero(Ex)])], List(params, p -> UnitalPoint(p))); | |
L := Lines(pg); | |
Display(Collected(List(L, l -> Number(U, p -> p in l)))); | |
# Regular tits unital. | |
eps := First(Elements(Ex), e -> (e^q = 1 + e and Trace(e^2 - e) <> 1)); | |
EbertUnital := function(p) | |
local r, s, t; | |
r := p[1]; | |
s := p[2]; | |
t := p[3]; | |
return VectorSpaceToElement(pg, [One(Ex), s + t*eps, r + (s^(aut + 2) + t^aut + s*t)*eps]); | |
end; | |
U1 := Concatenation([VectorSpaceToElement(pg, [Zero(Ex), Zero(Ex), One(Ex)])], List(params, p -> EbertUnital(p))); | |
Display(Collected(List(L, l -> Number(U1, p -> p in l)))); |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
LoadPackage("fining"); | |
e := 3; | |
q := 2 ^ e; | |
aut := 2^((e + 1) / 2); | |
pg := PG(2, q^2); | |
F := GF(q); | |
Ex := GF(q^2); | |
params := Cartesian(Elements(F), Elements(F), Elements(F)); | |
eps := First(Elements(Ex), e -> (e^q = 1 + e and Trace(e^2 - e) <> 1)); | |
U := Concatenation([VectorSpaceToElement(pg, [0, 0, 1] * Z(q)^0)], List(params, p -> VectorSpaceToElement(pg, [Z(q)^0, p[1] + p[2] * eps, p[3] + (p[1]^(aut + 2) + p[2]^aut + p[1] * p[2]) * eps]))); | |
pgsub := PG(2, q); | |
em := NaturalEmbeddingBySubfield(pgsub, pg); | |
baer := Set(Points(pgsub), x -> x^em); | |
collGroup := CollineationGroup(pg); | |
OutputLogTo("intersection.log"); | |
for i in [1..500000] do | |
coll := Random(collGroup); | |
baerMap := OnSets(baer, coll); | |
intersectionCount := Number(baerMap, y -> y in U); | |
Display(intersectionCount); | |
if intersectionCount = 0 then | |
Display("Disjoint Baer Sub-Plane Found!"); | |
fi; | |
od; | |
# Test Results (n=500,000): | |
# 9 153479 | |
# 11 105432 | |
# 7 105100 | |
# 13 51343 | |
# 5 50749 | |
# 15 14059 | |
# 3 13686 | |
# 1 3080 | |
# 17 3072 |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment