Created
July 11, 2018 03:25
-
-
Save liweigu/9e1b9e2917b5d06d1faf9493701c8d54 to your computer and use it in GitHub Desktop.
ND4JWorkspaceException-dl4j
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Error Log: | |
java.lang.IllegalStateException: Backprop: array (ACTIVATION_GRAD) workspace validation failed (vertex lstm1 - class: GravesLSTM) - array is defined in incorrect workspace | |
at org.deeplearning4j.nn.graph.ComputationGraph.validateArrayWorkspaces(ComputationGraph.java:1708) | |
at org.deeplearning4j.nn.graph.ComputationGraph.calcBackpropGradients(ComputationGraph.java:2435) | |
at org.deeplearning4j.nn.graph.ComputationGraph.computeGradientAndScore(ComputationGraph.java:1319) | |
at org.deeplearning4j.nn.graph.ComputationGraph.computeGradientAndScore(ComputationGraph.java:1280) | |
at org.deeplearning4j.optimize.solvers.BaseOptimizer.gradientAndScore(BaseOptimizer.java:178) | |
at org.deeplearning4j.optimize.solvers.StochasticGradientDescent.optimize(StochasticGradientDescent.java:60) | |
at org.deeplearning4j.optimize.Solver.optimize(Solver.java:54) | |
at org.deeplearning4j.nn.graph.ComputationGraph.fit(ComputationGraph.java:1104) | |
at org.deeplearning4j.nn.graph.ComputationGraph.fit(ComputationGraph.java:1050) | |
at org.deeplearning4j.nn.graph.ComputationGraph.fit(ComputationGraph.java:944) | |
at com.liweigu.dls.competition.srad.RadLSTM.run(RadLSTM.java:102) | |
at com.liweigu.dls.competition.srad.RadLSTMTest.testRun(RadLSTMTest.java:10) | |
Caused by: org.nd4j.linalg.workspace.ND4JWorkspaceException: Array workspace validation failed: Array of type ACTIVATION_GRAD should be in workspace "WS_LAYER_ACT_1" but is in workspace "WS_LAYER_WORKING_MEM" | |
at org.nd4j.linalg.workspace.BaseWorkspaceMgr.validateArrayLocation(BaseWorkspaceMgr.java:221) | |
at org.deeplearning4j.nn.workspace.LayerWorkspaceMgr.validateArrayLocation(LayerWorkspaceMgr.java:66) | |
at org.deeplearning4j.nn.graph.ComputationGraph.validateArrayWorkspaces(ComputationGraph.java:1699) | |
... 33 more | |
Key Code: | |
int cnn1Stride = 4; | |
int lstmHiddenCount = 100; | |
LOGGER.info("lstmHiddenCount = " + lstmHiddenCount); | |
int channels = 1; | |
int kernelSize = 3; // 5 | |
Map<String, InputPreProcessor> inputPreProcessors = new HashMap<String, InputPreProcessor>(); | |
inputPreProcessors.put("cnn1", new RnnToCnnPreProcessor(501, 501, channels)); | |
inputPreProcessors.put("lstm1", new CnnToRnnPreProcessor(120, 120, channels)); // 120 = Math.pow(14400, 0.5) | |
GraphBuilder graphBuilder = builder.graphBuilder().pretrain(false).backprop(true).backpropType(BackpropType.Standard) | |
.addInputs("inputs") | |
.addLayer("cnn1", new ConvolutionLayer.Builder(new int[] { kernelSize, kernelSize }, new int[] { cnn1Stride, cnn1Stride }, new int[] { 0, 0 }) | |
.nIn(channels).nOut(50).activation(Activation.RELU).weightInit(WeightInit.RELU).build(), "inputs") | |
// Output: (501 - kernelSize + 0) / cnn1Stride + 1 = 125 --> 125 * 125 * 50 = 781250 | |
.addLayer("cnn2", new SubsamplingLayer.Builder(new int[] { 2, 2 }, new int[] { 2, 2 }).build(), "cnn1") | |
// (125-2+0)/2+1 = 62 | |
.addLayer("cnn3", | |
new ConvolutionLayer.Builder(new int[] { kernelSize, kernelSize }, new int[] { 5, 5 }, new int[] { 0, 0 }) | |
.nIn(50).nOut(100).activation(Activation.RELU).weightInit(WeightInit.RELU).build(), "cnn2") | |
// Output: (62 - kernelSize + 0) / 5 + 1 = 12 --> 12 * 12 * 100 = 14400 | |
.addLayer("lstm1", new GravesLSTM.Builder().activation(Activation.SOFTSIGN) | |
.nIn(14400).nOut(lstmHiddenCount).build(), "cnn3") | |
.addLayer("lstm2", new GravesLSTM.Builder().activation(Activation.SOFTSIGN) | |
.nIn(lstmHiddenCount).nOut(lstmHiddenCount).build(), "lstm1") | |
.addVertex("thoughtVector", new LastTimeStepVertex("inputs"), "lstm2") | |
.addLayer("output", new OutputLayer | |
.Builder(LossFunctions.LossFunction.MSE) // MSE, MEAN_ABSOLUTE_ERROR | |
.activation(Activation.IDENTITY) | |
.nIn(lstmHiddenCount) | |
.nOut(501 * 501).build(), "thoughtVector") | |
.setOutputs("output"); | |
graphBuilder.setInputPreProcessors(inputPreProcessors); | |
ComputationGraph multiLayerNetwork = new ComputationGraph(graphBuilder.build()); | |
multiLayerNetwork.init(); |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment