Created
November 9, 2021 21:51
-
-
Save ljmartin/ed3961406618cb461a786c2221e56ff9 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import keras | |
import tensorflow as tf | |
class D2M(keras.layers.Layer): | |
""" | |
Converts an EDM `D` to its Gram matrix representation `M`. | |
""" | |
def call(self, inputs, **kwargs): | |
batch_size = tf.shape(inputs)[0] | |
n_atoms = tf.shape(inputs)[1] | |
D1j = tf.reshape(tf.tile(inputs[:, 0, :], [1, n_atoms]), | |
shape=(batch_size, n_atoms, n_atoms)) | |
Di1 = tf.transpose(D1j, perm=[0, 2, 1]) | |
M = .5 * (-inputs + D1j + Di1) | |
return M | |
class D2T(keras.layers.Layer): | |
""" | |
Converts a matrix `D` to the matrix `T = -.5 J D J`. `D` is EDM iff `T` is positive semi-definite. | |
""" | |
def __init__(self, n_atoms, **kwargs): | |
self.n_atoms = n_atoms | |
super().__init__(**kwargs) | |
def build(self, input_shape): | |
eye = tf.eye(num_rows=self.n_atoms, dtype=self.dtype) | |
J = eye - tf.ones(shape=(self.n_atoms, self.n_atoms), dtype=self.dtype) / float(self.n_atoms) | |
self.J = tf.reshape(J, shape=(-1, self.n_atoms, self.n_atoms), name="reshape_J") | |
super().build(input_shape) | |
def call(self, inputs, **kwargs): | |
J = tf.tile(self.J, multiples=[tf.shape(inputs)[0], 1, 1]) | |
T = -0.5 * tf.matmul(tf.matmul(J, inputs), J) | |
# D is EDM iff T is positive semi-definite | |
return T | |
def edm_loss(D, n_atoms): | |
""" | |
Loss imposing a soft constraint on EDMness for the input matrix `D`. | |
:param D: a hollow symmetric matrix | |
:param n_atoms: number of atoms | |
:return: loss value | |
""" | |
# D is EDM iff T = -0.5 JDJ is positive semi-definite | |
T = D2T(n_atoms, name="D2J")(D) | |
J_ev = tf.linalg.eigvalsh(T) | |
#return tf.square(tf.nn.relu(-J_ev)) | |
return tf.reduce_sum(tf.square(tf.nn.relu(-J_ev)), axis=-1) | |
mat = np.random.uniform(size=[10,10])*10 | |
print(edm_loss(mat[np.newaxis,:,:], 10)) | |
def np_D2T(D): | |
n_atoms = D.shape[0] | |
eye = np.eye(n_atoms) | |
J = eye - np.ones(shape=(n_atoms, n_atoms)) / float(n_atoms) | |
T = -0.5 * np.matmul(J.dot(D), J) | |
return T | |
def np_loss(D, n_atoms): | |
""" | |
Loss imposing a soft constraint on EDMness for the input matrix `D`. | |
:param D: a hollow symmetric matrix | |
:param n_atoms: number of atoms | |
:return: loss value | |
""" | |
# D is EDM iff T = -0.5 JDJ is positive semi-definite | |
T = np_D2T(D) | |
J_ev = np.linalg.eigvalsh(T) | |
#return tf.square(tf.nn.relu(-J_ev)) | |
return np.sum(np.clip(-J_ev, 0, np.inf)**2) | |
np_loss(mat, 10).sum() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment