Created
December 18, 2020 15:41
-
-
Save llSourcell/7c0d06ee611e62173a8af319d5e4c009 to your computer and use it in GitHub Desktop.
replace 'manual_control.py' in the following repo with this version: https://github.com/maximecb/gym-miniworld
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#!/usr/bin/env python3 | |
""" | |
This script allows you to manually control the simulator | |
using the keyboard arrows. | |
""" | |
import sys | |
import argparse | |
import pyglet | |
import math | |
from pyglet.window import key | |
from pyglet import clock | |
import numpy as np | |
import gym | |
import gym_miniworld | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--env-name', default='MiniWorld-Hallway-v0') | |
parser.add_argument('--domain-rand', action='store_true', help='enable domain randomization') | |
parser.add_argument('--no-time-limit', action='store_true', help='ignore time step limits') | |
parser.add_argument('--top_view', action='store_true', help='show the top view instead of the agent view') | |
args = parser.parse_args() | |
env = gym.make(args.env_name) | |
if args.no_time_limit: | |
env.max_episode_steps = math.inf | |
if args.domain_rand: | |
env.domain_rand = True | |
view_mode = 'top' if args.top_view else 'agent' | |
env.reset() | |
# Create the display window | |
env.render('pyglet', view=view_mode) | |
#you can | |
#replace this learning agent function | |
#with your own custom RL algorithm | |
def learningAgent(): | |
#Write Code | |
#Upload to Github | |
agent = [] | |
print('hello world') | |
good_episodes = [] | |
for episode in range(1000): | |
bad_episodes = [] | |
for t in range(1000): | |
env.render() | |
if len(good_episodes) == 0: | |
action = env.action_space.sample() | |
else: | |
action = env.actions.move_forward; | |
observation, reward, done, info = step(action) | |
if reward: | |
good_episodes.append((observation, action, reward)) | |
else: | |
bad_episodes.append((observation, action, reward)) | |
print(observation) | |
if done: | |
print("Episode finished after {} timesteps".format(t+1)) | |
break | |
def sample_policy(observation): | |
#add a policy here, this is just a reference. | |
value1, value2, value3 = observation | |
return 0 if value1 >= 20 else 1 | |
def step(action): | |
print('step {}/{}: {}'.format(env.step_count+1, env.max_episode_steps, env.actions(action).name)) | |
obs, reward, done, info = env.step(action) | |
if reward > 0: | |
print('reward={:.2f}'.format(reward)) | |
if done: | |
print('done!') | |
env.reset() | |
env.render('pyglet', view=view_mode) | |
return obs, reward, done, info | |
@env.unwrapped.window.event | |
def on_key_press(symbol, modifiers): | |
""" | |
This handler processes keyboard commands that | |
control the simulation | |
""" | |
if symbol == key.BACKSPACE or symbol == key.SLASH: | |
print('RESET') | |
env.reset() | |
env.render('pyglet', view=view_mode) | |
return | |
if symbol == key.ESCAPE: | |
env.close() | |
sys.exit(0) | |
if symbol == key.UP: | |
step(env.actions.move_forward) | |
elif symbol == key.DOWN: | |
step(env.actions.move_back) | |
elif symbol == key.LEFT: | |
step(env.actions.turn_left) | |
elif symbol == key.RIGHT: | |
step(env.actions.turn_right) | |
elif symbol == key.PAGEUP or symbol == key.P: | |
step(env.actions.pickup) | |
elif symbol == key.PAGEDOWN or symbol == key.D: | |
step(env.actions.drop) | |
elif symbol == key.ENTER: | |
step(env.actions.done) | |
@env.unwrapped.window.event | |
def on_key_release(symbol, modifiers): | |
pass | |
@env.unwrapped.window.event | |
def on_draw(): | |
env.render('pyglet', view=view_mode) | |
learningAgent() | |
@env.unwrapped.window.event | |
def on_close(): | |
pyglet.app.exit() | |
# Enter main event loop | |
pyglet.app.run() | |
env.close() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment