Created
August 24, 2023 11:04
-
-
Save lmyyao/7c6f685750b43224a1a3f5e690baef84 to your computer and use it in GitHub Desktop.
product_quantization demo
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from scipy.cluster.vq import vq, kmeans | |
import numpy as np | |
class PQ(object): | |
def __init__(self, M, k): | |
self.M = M | |
self.k = k | |
def fit(self, vectors, iter=None): | |
assert vectors.ndim == 2, "vectors must be 2 dim array" | |
N, D = vectors.shape | |
assert D % self.M == 0, "input dimension must be dividable by M" | |
self.D = D | |
self.step = int(self.D / self.M) | |
centers_book = {} | |
for index in range(self.M): | |
vec_sub = vectors[:, index * self.step: (index + 1) * self.step] | |
centers, _ = kmeans(vec_sub, self.k) | |
centers_book[index] = centers | |
self.centers_book = centers_book | |
def encode(self, vectors): | |
ndim = vectors.ndim | |
if ndim == 1: | |
if vectors.shape[0] != self.D: | |
raise ValueError(f"vector must {self.D} dim array") | |
else: | |
vectors = vectors.reshape(1, -1) | |
else: | |
if vectors.shape[-1] != self.D: | |
raise ValueError(f"vector must {self.D} dim array") | |
if self.centers_book is None: | |
raise ValueError("call fit first") | |
codes = [] | |
for index in range(self.M): | |
vec_sub = vectors[:, index * self.step: (index + 1) * self.step] | |
code, _ = vq(vec_sub, self.centers_book[index]) | |
codes.append(code) | |
return np.array(codes).T | |
N, D = 10000, 128 | |
X = np.random.random((N, D)).astype(np.float32) | |
query = np.random.random((D,)).astype(np.float32) | |
m = PQ(8, 256) | |
m.fit(X) | |
m.encode(query) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
https://github.com/matsui528/nanopq/blob/main/nanopq/pq.py