Skip to content

Instantly share code, notes, and snippets.

@lobrien
Forked from Avaq/combinators.js
Created March 27, 2019 19:11
Show Gist options
  • Save lobrien/21444b3089b93fedb76f7d163d2cb5ab to your computer and use it in GitHub Desktop.
Save lobrien/21444b3089b93fedb76f7d163d2cb5ab to your computer and use it in GitHub Desktop.
Common combinators in JavaScript
const I = x => x;
const K = x => y => x;
const A = f => x => f(x);
const T = x => f => f(x);
const W = f => x => f(x)(x);
const C = f => y => x => f(x)(y);
const B = f => g => x => f(g(x));
const S = f => g => x => f(x)(g(x));
const P = f => g => x => y => f(g(x))(g(y));
const Y = f => (g => g(g))(g => f(x => g(g)(x)));
Name # Haskell Ramda Sanctuary Signature
identity I id identity I a → a
constant K const always K a → b → a
apply¹ A ($) call (a → b) → a → b
thrush T (&) applyTo T a → (a → b) → b
duplication W join² unnest² join² (a → a → b) → a → b
flip C flip flip flip (a → b → c) → b → a → c
compose B (.), fmap² map² compose, map² (b → c) → (a → b) → a → c
substitution S ap² ap² ap² (a → b → c) → (a → b) → a → c
psi P on on (b → b → c) → (a → b) → a → a → c
fix-point³ Y fix (a → a) → a

¹) The A-combinator can be implemented as an alias of the I-combinator. Its implementation in Haskell exists because the infix nature gives it some utility. Its implementation in Ramda exists because it is overloaded with additional functionality.

²) Algebras like ap have different implementations for different types. They work like Function combinators only for Function inputs.

³) In JavaScript and other non-lazy languages, it is impossible to implement the Y-combinator. Instead a variant known as the applicative or strict fix-point combinator is implemented. This variant is sometimes rererred to as the Z-combinator.

Note that when I use the word "combinator" in this context, it implies "function combinator in the untyped lambda calculus".

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment