Skip to content

Instantly share code, notes, and snippets.

@loiseaujc
Created July 30, 2020 07:50
Show Gist options
  • Save loiseaujc/0c544e4f6fef4079d909306e00b6a73e to your computer and use it in GitHub Desktop.
Save loiseaujc/0c544e4f6fef4079d909306e00b6a73e to your computer and use it in GitHub Desktop.
# Author : Jean-Christophe Loiseau <[email protected]>
# Date : July 2020
# --> Standard python libraries.
import numpy as np
from scipy.linalg import pinv, eigh, eig
def dmd_analysis(x, y=None, rank=2):
# --> Partition data matrix into X and Y.
if y is None:
x, y = x[:, :-1], x[:, 1:]
# --> Pre-compute the covariance and cross-covariance matrices.
Cxx, Cyx = x @ x.T, y @ x.T
pinv_Cxx = pinv(Cxx)
# --> Compute the eigenspectrum of the symmetric positive definite matrix.
# appearing in the closed-form solution of the DMD problem.
# Inspecting its eigenspectrum will help choosing an appropriate rank for the model.
sigma, P = eigh(np.linalg.multi_dot([Cyx, pinv_Cxx, Cyx.T]))
# --> Sort and normalize the eigenvalues.
idx = np.argsort(-sigma)
sigma, P = sigma[idx], P[:, idx]
sigma /= np.sum(sigma)
# --> Truncate the output basis to the desired rank.
P = P[:, :rank].reshape(-1, rank)
# --> Compute the basis for the input space.
Q = (Cyx @ pinv_Cxx).T @ P
# --> Compute the eigenpairs of the low-dimensional DMD operator.
mu, psi, phi = eig(Q.T @ P, left=True, right=True)
# --> Compute the high-dimensional DMD modes.
phi, psi = P @ phi, Q @ psi
# --> Normalize using their bi-orthogonal property.
M = psi.T.conj() @ phi
if rank > 1:
psi /= np.diag(M).conj()
else:
psi /= M.conj()
return P, Q, sigma, mu
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment