With wildcard
{
  "query": {
    "bool": {
      "must": [
        {
          "wildcard": {
 "text": "*antonio*banderas*"With wildcard
{
  "query": {
    "bool": {
      "must": [
        {
          "wildcard": {
 "text": "*antonio*banderas*"| def trace_mem(nframe=6,top=8): | |
| ''' | |
| naive memory trace | |
| ''' | |
| import tracemalloc | |
| is_tracing = tracemalloc.is_tracing() | |
| if not is_tracing: | |
| # start tracing | |
| tracemalloc.start(nframe) | |
| return {} | 
| async function getObjectAsync(bucket, key) { | |
| try { | |
| const data = await s3 | |
| .getObject({ Bucket: bucket, Key: key }) | |
| .promise(); | |
| var contents = data.Body.toString('utf-8'); | |
| return contents; | |
| } catch (err) { | |
| console.log(err); | |
| } | 
| function aggressive_tokenizer(text) { | |
| // most punctuation | |
| text = text.replace(/[^\w\.\-\/\+\<\>,&]/g, " $& "); | |
| // commas if followed by space | |
| text = text.replace(/(,\s)/g, " $1"); | |
| // single quotes if followed by a space | |
| text = text.replace(/('\s)/g, " $1"); | |
| // single quotes if last char | |
| text = text.replace(/('$)/, " $1"); | |
| text = text.replace(/(\s+[`'"‘])(\w+)\b(?!\2)/g, " $2"); | 
| #!/usr/bin/env python | |
| # -*- coding: utf-8 -*- | |
| # | |
| # @author loretoparisi at gmail dot com | |
| # Copyright (c) 2020 Loreto Parisi | |
| # | |
| ### built-in | |
| import argparse | |
| import json | 
| import os; import psutil; import timeit | |
| from datasets import load_dataset | |
| mem_before = psutil.Process(os.getpid()).memory_info().rss >> 20 | |
| wiki = load_dataset("wikipedia", "20200501.en", split='train') | |
| mem_after = psutil.Process(os.getpid()).memory_info().rss >> 20 | |
| print(f"RAM memory used: {(mem_after - mem_before)} MB") | |
| s = """batch_size = 1000 | |
| for i in range(0, len(wiki), batch_size): | 
| prediction = model.predict_classes(X_test) | |
| prediction = prediction.reshape(5370,) | |
| data = {'True':y_test,'Predicted':prediction} | |
| df2 = pd.DataFrame(data) | |
| from sklearn.metrics import classification_report,confusion_matrix | |
| print(classification_report(df2['True'],df2['Predicted'])) | |
| print(confusion_matrix(df2['True'],df2['Predicted'])) | 
Get started by creating a new file or uploading an existing file. We recommend every repository include a README, LICENSE, and .gitignore.
…or create a new repository on the command line
echo "# myrepo" >> README.md
git init
git add README.md
git commit -m "first commit"
git remote add origin https://github.com/loretoparisi/myrepo.git
git push -u origin master
| API Name | Memory | vCPUs | Physical Processor | Network Performance | Linux On Demand cost | Linux Reserved cost | 
|---|---|---|---|---|---|---|
| a1.2xlarge | 16.0 GiB | 8 vCPUs | AWS Graviton Processor | Up to 10 Gigabit | $148.92 monthly | $93.80 monthly | 
| a1.4xlarge | 32.0 GiB | 16 vCPUs | AWS Graviton Processor | Up to 10 Gigabit | $297.84 monthly | $187.61 monthly | 
| a1.large | 4.0 GiB | 2 vCPUs | AWS Graviton Processor | Up to 10 Gigabit | $37.23 monthly | $23.43 monthly | 
| a1.medium | 2.0 GiB | 1 vCPUs | AWS Graviton Processor | Up to 10 Gigabit | $18.61 monthly | $11.75 monthly | 
| a1.metal | 32.0 GiB | 16 vCPUs | AWS Graviton Processor | Up to 10 Gigabit | $297.84 monthly | $187.61 monthly | 
| a1.xlarge | 8.0 GiB | 4 vCPUs | AWS Graviton Processor | Up to 10 Gigabit | $74.46 monthly | $46.93 monthly | 
| c1.medium | 1.7 GiB | 2 vCPUs | Intel Xeon Family | Moderate | $94.90 monthly | $66.43 monthly | 
| [ | |
| { | |
| "title": "'Corine, Corine'", | |
| "artist": "The Abletones Big Band", | |
| "count": "19", | |
| "size": "393 MB", | |
| "link": "http://mtkdata.cambridgemusictechnology.co.uk/Telefunken/AbletonesBigBand_CorineCorine_Full.zip" | |
| }, | |
| { | |
| "title": "'Song Of India'", |