Skip to content

Instantly share code, notes, and snippets.

View malharb's full-sized avatar

Malhar malharb

  • Champaign, Illinois
View GitHub Profile
@malharb
malharb / pulsar01.py
Created June 5, 2020 08:10
Pulsar - evaluation
prediction = model.predict_classes(X_test)
prediction = prediction.reshape(5370,)
data = {'True':y_test,'Predicted':prediction}
df2 = pd.DataFrame(data)
from sklearn.metrics import classification_report,confusion_matrix
print(classification_report(df2['True'],df2['Predicted']))
print(confusion_matrix(df2['True'],df2['Predicted']))
@malharb
malharb / pulsar01.py
Created June 5, 2020 08:08
Creating neural network model and fitting it
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense,Dropout
from tensorflow.keras.callbacks import EarlyStopping
model = Sequential()
model.add(Dense(10,input_dim=8,activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(15,activation='relu'))
model.add(Dropout(0.5))
@malharb
malharb / pulsar01.py
Created June 5, 2020 08:07
Pulsar - splitting data and preprocessing
from sklearn.model_selection import train_test_split
X = df.drop('target_class',axis=1)
y = df['target_class']
X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.3)
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
scaler.fit(X_train)
@malharb
malharb / pulsar01.py
Last active June 5, 2020 08:05
Pulsar - Importing libraries and initialiaztion
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
df = pd.read_csv('pulsar_stars.csv')
df.info()
@malharb
malharb / classification.py
Created June 3, 2020 12:50
classification
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
plt.show()
df = sns.load_dataset('iris')
#use machine learning for classification. Via logistic regression and KNN
#1) logistic regression