Skip to content

Instantly share code, notes, and snippets.

@louis030195
Last active October 7, 2020 19:02
Show Gist options
  • Save louis030195/80ce2fdd2c475bef09267399b0be0b79 to your computer and use it in GitHub Desktop.
Save louis030195/80ce2fdd2c475bef09267399b0be0b79 to your computer and use it in GitHub Desktop.
Automatic differentiation in 3 languages
using System;
using System.Collections.Generic;
using System.Linq;
public class Value
{
public double Data { get; set; }
public double Gradient { get; set; }
private Action _backward;
private readonly List<Value> _prev;
public Value(double data, IEnumerable<Value> children = null)
{
Data = data;
Gradient = 0;
_prev = children != null ? new List<Value>(children) : new List<Value>();
_backward = () => {};
}
public static bool operator ==(Value a, Value b) => a.Data.Equals(b.Data);
public static bool operator ==(double a, Value b) => a.Equals(b.Data);
public static bool operator ==(Value a, double b) => a.Data.Equals(b);
public static bool operator !=(Value a, Value b) => !a.Data.Equals(b.Data);
public static bool operator !=(double a, Value b) => !a.Equals(b.Data);
public static bool operator !=(Value a, double b) => !a.Data.Equals(b);
public static Value operator +(Value a, Value b)
{
var ret = new Value(a.Data + b.Data, new[]{a, b});
void B()
{
a.Gradient += ret.Gradient;
b.Gradient += ret.Gradient;
}
ret._backward = B;
return ret;
}
public static Value operator +(double a, Value b) => new Value(a) + b;
public static Value operator +(Value a, double b) => a + new Value(b);
public static Value operator -(Value a) => a * -1; // Unary neg
public static Value operator -(Value a, Value b) => a + -b;
public static Value operator -(double a, Value b) => new Value(a) - b;
public static Value operator -(Value a, double b) => a - new Value(b);
public static Value operator *(Value a, Value b)
{
var ret = new Value(a.Data * b.Data, new[]{a, b});
void B()
{
a.Gradient += b.Data * ret.Gradient;
b.Gradient += a.Data * ret.Gradient;
};
ret._backward = B;
return ret;
}
public static Value operator *(double a, Value b) => new Value(a) * b;
public static Value operator *(Value a, double b) => a * new Value(b);
public static Value operator /(Value a, Value b) => a * Pow(b, -1);
public static Value operator /(double a, Value b) => new Value(a) / b;
public static Value operator /(Value a, double b) => a / new Value(b);
public static Value Pow(Value a, Value b)
{
var ret = new Value(Math.Pow(a.Data, b.Data), new[]{a});
void B()
{
a.Gradient += b.Data * Math.Pow(a.Data, b.Data - 1) * ret.Gradient;
};
ret._backward = B;
return ret;
}
public static Value Pow(Value a, double b) => Pow(a, new Value(b));
public static Value Pow(double a, Value b) => Pow(new Value(a), b);
public Value Relu()
{
var ret = new Value(Data < 0 ? 0 : Data, new[]{this});
var tmpThis = this;
void B()
{
tmpThis.Gradient += (ret.Data > 0 ? 1 : 0) * ret.Gradient;
};
ret._backward = B;
return ret;
}
public void Backward()
{
// topological order all of the children in the graph
var topology = new List<Value>();
var visited = new HashSet<Value>();
Gradient = 1;
void BuildTopology(Value v)
{
if (visited.Contains(v)) return;
visited.Add(v);
foreach (var child in v._prev) BuildTopology(child);
topology.Add(v);
}
BuildTopology(this);
// go one variable at a time and apply the chain rule to get its gradient
for (var i = topology.Count - 1; i > 0; i--) topology[i]._backward();
}
public override string ToString() => $"Value(Data={Data}, Gradient={Gradient})";
}
package org.example
import kotlin.math.pow
class Value (var data: Float, var children: ArrayList<Value> = arrayListOf(), private var op: String = "") {
var grad: Float = 0f
private var backward: (()->Unit)? = null
private var prev: ArrayList<Value> = children
operator fun plus(other: Value): Value {
val out = Value(this.data + other.data, arrayListOf(this, other), "+")
val backward = {
this.grad += out.grad
other.grad += out.grad
}
out.backward = backward
return out
}
operator fun plus(other: Float): Value {
return this + Value(other, arrayListOf(), "+")
}
operator fun times(other: Value): Value {
val out = Value(this.data * other.data, arrayListOf(this, other), "*")
val backward = {
this.grad += other.data * out.grad
other.grad += this.data * out.grad
}
out.backward = backward
return out
}
operator fun times(other: Float): Value {
return this * Value(other, arrayListOf(), "*")
}
fun relu() : Value {
val out = if (this.data < 0) {
Value(0.0f, arrayListOf(this), "ReLU")
} else {
Value(this.data, arrayListOf(this), "ReLU")
}
val backward = {
val mul = if (out.data > 0.0f) 1.0f else 0.0f
this.grad += out.grad * mul
}
out.backward = backward
return out
}
fun backward() {
// topological order all of the children in the graph
val topo: ArrayList<Value> = ArrayList()
val visited: HashSet<Value> = HashSet()
fun buildTopology (v: Value) {
if (v !in visited) {
visited.add(v)
for (child in v.prev) {
buildTopology(child)
}
topo.add(v)
}
}
buildTopology(this)
// go one variable at a time and apply the chain rule to get its gradient
this.grad = 1.0f
for (v in topo.reversed()){
v.backward?.invoke()
}
}
fun pow(value: Int) : Value {
val out = Value(this.data.pow(value), arrayListOf(this), "**$value")
val backward = {
this.grad += (value * this.data.pow(value-1))*out.grad
}
out.backward = backward
return out
}
operator fun minus(other: Value): Value {
return this + (-other)
}
operator fun unaryMinus(): Value {
return this * -1f
}
operator fun div(other: Value): Value {
return this.pow(-1) * other
}
operator fun div(other: Float): Value {
return this * other.pow(-1)
}
override fun toString(): String {
return "Value(data=$data, grad=$grad, backward=$backward, prev=$prev, op='$op')"
}
}
class Value:
""" stores a single scalar value and its gradient """
def __init__(self, data, _children=(), _op=''):
self.data = data
self.grad = 0
# internal variables used for autograd graph construction
self._backward = lambda: None
self._prev = set(_children)
self._op = _op # the op that produced this node, for graphviz / debugging / etc
def __add__(self, other):
other = other if isinstance(other, Value) else Value(other)
out = Value(self.data + other.data, (self, other), '+')
def _backward():
self.grad += out.grad
other.grad += out.grad
out._backward = _backward
return out
def __mul__(self, other):
other = other if isinstance(other, Value) else Value(other)
out = Value(self.data * other.data, (self, other), '*')
def _backward():
self.grad += other.data * out.grad
other.grad += self.data * out.grad
out._backward = _backward
return out
def __pow__(self, other):
assert isinstance(other, (int, float)), "only supporting int/float powers for now"
out = Value(self.data**other, (self,), f'**{other}')
def _backward():
self.grad += (other * self.data**(other-1)) * out.grad
out._backward = _backward
return out
def relu(self):
out = Value(0 if self.data < 0 else self.data, (self,), 'ReLU')
def _backward():
self.grad += (out.data > 0) * out.grad
out._backward = _backward
return out
def backward(self):
# topological order all of the children in the graph
topo = []
visited = set()
def build_topo(v):
if v not in visited:
visited.add(v)
for child in v._prev:
build_topo(child)
topo.append(v)
build_topo(self)
# go one variable at a time and apply the chain rule to get its gradient
self.grad = 1
for v in reversed(topo):
v._backward()
def __neg__(self): # -self
return self * -1
def __radd__(self, other): # other + self
return self + other
def __sub__(self, other): # self - other
return self + (-other)
def __rsub__(self, other): # other - self
return other + (-self)
def __rmul__(self, other): # other * self
return self * other
def __truediv__(self, other): # self / other
return self * other**-1
def __rtruediv__(self, other): # other / self
return other * self**-1
def __repr__(self):
return f"Value(data={self.data}, grad={self.grad})"
using System;
using System.Collections.Generic;
using NUnit.Framework;
namespace TestsEdit
{
public class ValueTests
{
[Test]
public void BasicSimplePasses()
{
var x = new Value(-4.0);
Assert.AreEqual(0.0, x.Gradient);
var z = 2.0 * x + 2.0 + x;
var q = z.Relu() + z * x;
var h = (z * z).Relu();
var y = h + q + q * x;
y.Backward();
Assert.IsTrue(!0.0.Equals(x.Gradient)); // Failure
Assert.AreEqual(46.0, x.Gradient);
Assert.AreEqual(-20.0, y.Data);
}
}
}
package org.example
import org.junit.Test
import kotlin.test.assertEquals
class ValueTests {
@Test
fun `Basic Simple Passes`(){
var x = Value(-4.0)
var z = 2.0 * x + 2.0 + x
var q = z.relu() + z * x
var h = (z * z).relu()
var y = h + q + q * x
y.backward()
assertTrue(0.0 != x.gradient) // Success
assertEquals(46.0, x.gradient)
assertEquals(-20.0, y.data)
}
}
operator fun Float.div(other: Value): Float {
return this / other.data
}
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment