Last active
September 25, 2018 21:20
-
-
Save louisswarren/0cef06468028af7a9109432f00af82a6 to your computer and use it in GitHub Desktop.
Closure attempt number omega
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
open import Agda.Builtin.List | |
open import Agda.Builtin.Nat renaming (Nat to ℕ) | |
open import Agda.Builtin.Equality | |
open import Agda.Builtin.Sigma | |
data ⊥ : Set where | |
¬_ : (A : Set) → Set | |
¬ A = A → ⊥ | |
⊥-elim : {A : Set} → ⊥ → A | |
⊥-elim () | |
_≢_ : {A : Set} → A → A → Set | |
x ≢ y = ¬(x ≡ y) | |
data Dec (A : Set) : Set where | |
yes : A → Dec A | |
no : ¬ A → Dec A | |
Decidable≡ : Set → Set | |
Decidable≡ A = (x y : A) → Dec (x ≡ y) | |
data Fin : ℕ → Set where | |
fzero : ∀{n} → Fin (suc n) | |
fsuc : ∀{n} → Fin n → Fin (suc n) | |
Fvec : Set → ℕ → Set | |
Fvec A n = Fin n → A | |
_∈_ : {A : Set} {n : ℕ} → A → Fvec A n → Set | |
x ∈ xs = Σ _ λ k → xs k ≡ x | |
∅ : {A : Set} → Fvec A zero | |
∅ () | |
All : {A : Set} {n : ℕ} → (A → Set) → Fvec A n → Set | |
All P xs = ∀ k → P (xs k) | |
module Deduction | |
{A T : Set} | |
(_≟_ : Decidable≡ A) | |
(_⇒_ : {n : ℕ} → Fvec A n → A → T) | |
where | |
data _⊢_ {n} (αs : Fvec T n) (x : A) : Set where | |
leaf : (∅ ⇒ x) ∈ αs → αs ⊢ x | |
stem : ∀{xs} → (xs ⇒ x) ∈ αs → All (αs ⊢_) xs → αs ⊢ x | |
data Arrow : Set where | |
_⇒_ : ∀{n} → Fvec ℕ n → ℕ → Arrow | |
postulate natEq : Decidable≡ ℕ | |
open Deduction natEq _⇒_ |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
open import Agda.Builtin.Equality | |
open import Agda.Builtin.Nat renaming (Nat to ℕ) | |
open import Agda.Builtin.Sigma | |
open import Decidable | |
module Fvec where | |
data Fin : ℕ → Set where | |
fzero : ∀{n} → Fin (suc n) | |
fsuc : ∀{n} → Fin n → Fin (suc n) | |
Fvec : Set → ℕ → Set | |
Fvec A n = Fin n → A | |
head : ∀{A n} → Fvec A (suc n) → A | |
head φs = φs fzero | |
tail : ∀{A n} → Fvec A (suc n) → Fvec A n | |
tail φs = λ k → φs (fsuc k) | |
∅ : {A : Set} → Fvec A zero | |
∅ () | |
All : {A : Set} {n : ℕ} → (A → Set) → Fvec A n → Set | |
All P φs = ∀ k → P (φs k) | |
Any : {A : Set} {n : ℕ} → (A → Set) → Fvec A n → Set | |
Any P φs = Σ _ λ k → P (φs k) | |
_∈_ : {A : Set} {n : ℕ} → A → Fvec A n → Set | |
x ∈ φs = Any (x ≡_) φs | |
all : ∀{n A} {P : Pred A} (p : Decidable P) → (φs : Fvec A n) → Dec (All P φs) | |
all {zero} p φs = yes (λ ()) | |
all {suc n} p φs with p (φs fzero) | |
all {suc n} p φs | no ¬P0 = no (λ z → ¬P0 (z fzero)) | |
... | yes P0 with all p (tail φs) | |
... | no ¬Ps = no (λ k → ¬Ps (λ j → k (fsuc j))) | |
... | yes Ps = yes ind | |
where | |
ind : _ | |
ind fzero = P0 | |
ind (fsuc k) = Ps k | |
any : ∀{n A} {P : Pred A} (p : Decidable P) → (φs : Fvec A n) → Dec (Any P φs) | |
any {zero} p φs = no ∅any | |
where | |
∅any : _ | |
∅any (() , _) | |
any {suc n} p φs with p (φs fzero) | |
... | yes P0 = yes (fzero , P0) | |
... | no ¬P0 with any p (tail φs) | |
... | yes (k , Ps) = yes (fsuc k , Ps) | |
... | no ¬k,Ps = no ind | |
where | |
ind : _ | |
ind (fzero , P0) = ¬P0 P0 | |
ind (fsuc k , Ps) = ¬k,Ps (k , Ps) | |
decide∈ : ∀{A n} → Decidable≡ A → (x : A) → (xs : Fvec A n) → Dec (x ∈ xs) | |
decide∈ deq x φs = any (deq x) φs |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment