Last active
September 6, 2019 03:13
-
-
Save louisswarren/310fb89ce8859fc7e150ec39ab45b1f0 to your computer and use it in GitHub Desktop.
Type theory chapter of the HoTT book in Agda
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
open import Agda.Builtin.Equality | |
open import Agda.Primitive | |
Π : ∀{a b} → (A : Set a) → (B : A → Set b) → Set (a ⊔ b) | |
Π A B = (x : A) → B x | |
syntax Π A (λ x → B) = Π[ x ∶ A ] B | |
record _×_ {a b} (A : Set a) (B : Set b) : Set (a ⊔ b) where | |
constructor _,_ | |
field | |
pr₁ : A | |
pr₂ : B | |
open _×_ public | |
rec[_×_] : ∀{a b c} → (A : Set a) → (B : Set b) | |
→ Π[ C ∶ Set c ] ((A → B → C) → A × B → C) | |
rec[ A × B ] C g (a , b) = g a b | |
pr₁′ : ∀{a b} {A : Set a} {B : Set b} → A × B → A | |
pr₁′ {a} {b} {A} {B} = rec[ A × B ] A λ a b → a | |
pr₂′ : ∀{a b} {A : Set a} {B : Set b} → A × B → B | |
pr₂′ {a} {b} {A} {B} = rec[ A × B ] B λ a b → b | |
_ : ∀{a b} {A : Set a} {B : Set b} → (x : A × B) → pr₁ x ≡ pr₁′ x | |
_ = λ _ → refl | |
_ : ∀{a b} {A : Set a} {B : Set b} → (x : A × B) → pr₂ x ≡ pr₂′ x | |
_ = λ _ → refl | |
uniq[_×_] : ∀{a b} → (A : Set a) → (B : Set b) | |
→ Π[ x ∶ A × B ] ((pr₁ x , pr₂ x) ≡ x) | |
uniq[ A × B ] (a , b) = refl | |
ind[_×_] : ∀{a b c} → (A : Set a) → (B : Set b) | |
→ Π[ C ∶ (A × B → Set c) ] | |
(Π[ x ∶ A ] Π[ y ∶ B ] C (x , y) → Π[ x ∶ A × B ] C x) | |
ind[ A × B ] C g (a , b) = g a b | |
data 𝟙 : Set where | |
★ : 𝟙 | |
rec[𝟙] : ∀{a} → Π[ C ∶ Set a ] (C → 𝟙 → C) | |
rec[𝟙] C c ★ = c | |
ind[𝟙] : ∀{c} → Π[ C ∶ (𝟙 → Set c) ] (C ★ → Π[ x ∶ 𝟙 ] C x) | |
ind[𝟙] C c ★ = c | |
uniq[𝟙] : Π[ x ∶ 𝟙 ] (★ ≡ x) | |
uniq[𝟙] = ind[𝟙] (★ ≡_) refl |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment