Skip to content

Instantly share code, notes, and snippets.

@louspringer
Created November 22, 2025 00:51
Show Gist options
  • Select an option

  • Save louspringer/5af073c7dbe8a3f9dbc711c86202f1fe to your computer and use it in GitHub Desktop.

Select an option

Save louspringer/5af073c7dbe8a3f9dbc711c86202f1fe to your computer and use it in GitHub Desktop.
Jobs Leadership Shadow Engine – Attractor & Bifurcation Math (HTML with MathJax)
<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>Jobs Leadership Shadow Engine – Attractor & Bifurcation Math</title>
<link rel="preconnect" href="https://cdn.jsdelivr.net">
<script>
window.MathJax = {
tex: { inlineMath: [['$', '$'], ['\\(', '\\)']], displayMath: [['$$','$$'], ['\\[','\\]']] },
svg: { fontCache: 'global' }
};
</script>
<script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-chtml.js"></script>
<style>
body { font-family: -apple-system, system-ui, Segoe UI, Roboto, Helvetica, Arial, sans-serif; line-height: 1.6; padding: 32px 16px; max-width: 820px; margin: 0 auto; color: #111; }
h1, h2 { line-height: 1.25; }
code, pre { font-family: ui-monospace, SFMono-Regular, Menlo, Consolas, Liberation Mono, monospace; }
ul { padding-left: 1.25rem; }
.muted { color: #555; }
hr { border: 0; border-top: 1px solid #eee; margin: 24px 0; }
</style>
</head>
<body>
<h1>Jobs Leadership Shadow Engine – Attractor &amp; Bifurcation Math</h1>
<p class="muted">Permanent HTML with MathJax rendering.</p>
<p>Let:</p>
<ul>
<li>$ \\mathbf{L} \\in \\mathbb{R}^{21} $ = vector of the 21 leadership dimensions.</li>
<li>$ M \\in \\mathbb{R} $ = meta-coherence (D22: Vision Attractor Coherence).</li>
<li>$ \\mathbf{S} \\in \\mathbb{R}^{4} $ = shadow dimensions:
<ul>
<li>$ S_1 = $ Emotional Volatility</li>
<li>$ S_2 = $ Harsh Critique Intensity</li>
<li>$ S_3 = $ Ego Dominance</li>
<li>$ S_4 = $ Unpredictability</li>
</ul>
</li>
</ul>
<h2>1. Leadership Attractor</h2>
<p>Define the leadership attractor strength as:</p>
<p>$$
A_L = M \\cdot \\frac{1}{21} \\sum_{i=1}^{21} L_i^2
$$</p>
<p>This encodes:</p>
<ul>
<li>Higher coherence $ M $ strengthens the attractor.</li>
<li>Higher, well-aligned leadership coordinates $ L_i $ increase overall field strength.</li>
</ul>
<h2>2. Shadow Attractor</h2>
<p>Model the shadow as a separate quadratic potential:</p>
<p>$$
A_S = \\sum_{j=1}^{4} w_j S_j^2
$$</p>
<p>with weights representing their destructive leverage:</p>
<ul>
<li>$ w_1 = 0.9 $ (Emotional Volatility)</li>
<li>$ w_2 = 0.7 $ (Harsh Critique)</li>
<li>$ w_3 = 1.1 $ (Ego Dominance)</li>
<li>$ w_4 = 0.8 $ (Unpredictability)</li>
</ul>
<h2>3. Coupling Tensor</h2>
<p>Let $ C_{ij} $ encode how each shadow dimension perturbs each leadership dimension:</p>
<p>$$
L'_j = L_j + \\sum_{i=1}^{4} C_{ij} S_i
$$</p>
<p>where:</p>
<ul>
<li>Positive $ C_{ij} $ = amplification (e.g., Harsh Critique → Bar Setting).</li>
<li>Negative $ C_{ij} $ = attenuation (e.g., Emotional Volatility → Iteration Cadence).</li>
</ul>
<p>The effective attractor becomes:</p>
<p>$$
A_L' = M \\cdot \\frac{1}{21} \\sum_{j=1}^{21} (L'_j)^2
$$</p>
<h2>4. Net System Attractor</h2>
<p>Introduce a shadow penalty factor $ \\lambda &gt; 0 $:</p>
<p>$$
A_{\\text{net}} = A_L' - \\lambda A_S
$$</p>
<ul>
<li>If $ A_L' \\gg \\lambda A_S $: the leadership engine dominates (coherent attractor).</li>
<li>If $ \\lambda A_S \\approx A_L' $: the system becomes marginal, brittle, and high-variance.</li>
<li>If $ \\lambda A_S \\gg A_L' $: the shadow dominates; collapse of coherence (e.g., firing, implosion).</li>
</ul>
<p>Empirically, for Jobs you can interpret:</p>
<ul>
<li>Early Jobs (pre-1985): high $ A_L $, very high $ A_S $, large $ \\lambda $ from weak dampers → breakdown.</li>
<li>Later Jobs (2000s): high $ A_L $, moderated $ A_S $, stronger dampers (Cook, Ive, culture) → stable edge regime.</li>
</ul>
<h2>5. 22+4 Dimensional Bifurcation View</h2>
<p>Consider a control parameter $ \\mu \\in \\mathbb{R} $ that scales the effective shadow:</p>
<p>$$
\\mathbf{S}_{\\text{eff}} = \\mu \\mathbf{S}
$$</p>
<p>and let the damper matrix $ D \\in \\mathbb{R}^{4 \\times 4} $ (diagonal, $ 0 \\le d_{ii} \\le 1 $) represent ethical dampers that reduce each shadow component:</p>
<p>$$
\\tilde{\\mathbf{S}} = (I - D)\\, \\mathbf{S}_{\\text{eff}} = (I - D)\\, \\mu \\mathbf{S}
$$</p>
<p>The shadow attractor becomes:</p>
<p>$$
A_S(\\mu, D) = \\sum_{j=1}^{4} w_j \\tilde{S}_j^2 .
$$</p>
<p>Define the <strong>bifurcation condition</strong> as the locus where net coherence is zero:</p>
<p>$$
A_{\\text{net}}(\\mu, D) = 0 \\quad \\Rightarrow \\quad
M \\cdot \\frac{1}{21} \\sum_{j=1}^{21} (L'_j)^2 = \\lambda A_S(\\mu, D) .
$$</p>
<p>Qualitatively:</p>
<ul>
<li>For $ \\mu $ small (shadow under-expressed) or $ D $ strong (dampers effective), the system sits in a <strong>single stable attractor</strong>: high-performance, high-pressure, but coherent.</li>
<li>As $ \\mu $ increases or $ D $ weakens:
<ul>
<li>First, you get <strong>edge-of-chaos behavior</strong>: large swings in morale and output, but still orbiting a recognizable attractor.</li>
<li>Beyond a critical $ \\mu_c(D) $, the system bifurcates into:
<ul>
<li>a high-output / high-damage regime, and</li>
<li>a collapse regime (burnout, attrition, political revolt).</li>
</ul>
</li>
</ul>
</li>
</ul>
<p>This is a <strong>22+4 dimensional bifurcation surface</strong> in the $(\\mathbf{L}, M, \\mathbf{S}, D)$ space. Practically, you can treat:</p>
<ul>
<li>$ \\mu $ as "how much of the dark side is expressed", and</li>
<li>$ D $ as "how well the organization has wrapped the leader with buffers".</li>
</ul>
<h2>6. Practical Use</h2>
<ul>
<li>For coaching: estimate rough scores for $ \\mathbf{L}, M, \\mathbf{S} $, and dampers $ D $.</li>
<li>Track whether interventions (coaching, governance, process) move the system away from the bifurcation surface.</li>
<li>The goal is not to drive $ \\mathbf{S} $ to zero, but to contain it so $ A_L' $ consistently dominates.</li>
</ul>
</body>
</html>
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment