Created
March 15, 2020 15:44
-
-
Save lpraat/ef064c4ca9f5ed30e4e0e92ba517d6ac to your computer and use it in GitHub Desktop.
Conjugate gradient algorithm
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import tensorflow as tf | |
| from src.utils.dtypes import tf_float_type | |
| def conj_gradient(A, b, iters): | |
| # todo can be optimized | |
| x = tf.zeros_like(b) | |
| r = b - tf.matmul(A, x) | |
| p = r | |
| for _ in range(iters): | |
| alpha = tf.matmul(tf.transpose(r), r) / (tf.matmul(tf.matmul(tf.transpose(p), A), p) + 1e-7) | |
| x = x + alpha * p | |
| r_new = r - alpha * tf.matmul(A, p) | |
| beta = tf.matmul(tf.transpose(r_new), r_new) / tf.matmul(tf.transpose(r), r) | |
| p = r_new + beta * p | |
| r = r_new | |
| return x | |
| A = tf.constant([[4, 1], [1, 3]], dtype=tf_float_type) | |
| b = tf.transpose(tf.constant([[1, 2]], dtype=tf_float_type)) | |
| print(conj_gradient(A, b, iters=10)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment