Created
December 14, 2020 01:18
-
-
Save lqdev/0c4dc9eea93b7b8541f31ddd429afb53 to your computer and use it in GitHub Desktop.
Code from F# Advent 2020 Image Classifier
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
#r "nuget:Microsoft.ML" | |
#r "nuget:Microsoft.ML.Vision" | |
#r "nuget:Microsoft.ML.ImageAnalytics" | |
#r "nuget:SciSharp.TensorFlow.Redist" | |
open System | |
open System.IO | |
open Microsoft.ML | |
open Microsoft.ML.Data | |
open Microsoft.ML.Vision | |
[<CLIMutable>] | |
type ImageData = { | |
ImagePath: string | |
Label: string | |
} | |
[<CLIMutable>] | |
type ImagePrediction = { | |
ImagePath: string | |
PredictedLabel: string | |
} | |
// Load images from directory and assign directory name as labels | |
let loadImagesFromDirectory (path:string) (useDirectoryAsLabel:bool) = | |
let files = Directory.GetFiles(path, "*",searchOption=SearchOption.AllDirectories) | |
files | |
|> Array.filter(fun file -> | |
(Path.GetExtension(file) = ".jpg") || | |
(Path.GetExtension(file) = ".png")) | |
|> Array.map(fun file -> | |
let mutable label = Path.GetFileName(file) | |
if useDirectoryAsLabel then | |
label <- Directory.GetParent(file).Name | |
else | |
let mutable brk = false | |
for index in 0..label.Length do | |
while not brk do | |
if not (label.[index] |> Char.IsLetter) then | |
label <- label.Substring(0,index) | |
brk <- true | |
{ImagePath=file; Label=label} | |
) | |
// Initialize MLContext | |
let ctx = MLContext() | |
// Load images | |
let imageData = loadImagesFromDirectory "C:/Datasets/fsadvent2020/Train" true | |
// Createa an IDataView for the images. | |
let imageIdv = ctx.Data.LoadFromEnumerable<ImageData>(imageData) | |
// Set image classifier options | |
let classifierOptions = ImageClassificationTrainer.Options() | |
classifierOptions.FeatureColumnName <- "Image" | |
classifierOptions.LabelColumnName <- "LabelKey" | |
classifierOptions.TestOnTrainSet <- true | |
classifierOptions.Arch <- ImageClassificationTrainer.Architecture.ResnetV2101 | |
classifierOptions.MetricsCallback <- Action<ImageClassificationTrainer.ImageClassificationMetrics>(fun x -> printfn "%s" (x.ToString())) | |
// Define training / consumption pipeline | |
let pipeline = | |
EstimatorChain() | |
.Append(ctx.Transforms.LoadRawImageBytes("Image",null,"ImagePath")) | |
.Append(ctx.Transforms.Conversion.MapValueToKey("LabelKey","Label")) | |
.Append(ctx.MulticlassClassification.Trainers.ImageClassification(classifierOptions)) | |
.Append(ctx.Transforms.Conversion.MapKeyToValue("PredictedLabel")) | |
// Train the model | |
let model = pipeline.Fit(imageIdv) | |
// (Optional) Save the model | |
ctx.Model.Save(model,imageIdv.Schema,"fsadvent2020-model.zip") | |
// Load the model | |
//let (model,schema) = ctx.Model.Load("fsadvent2020-model.zip") | |
// Load test images | |
let testImages = | |
Directory.GetFiles("C:/Datasets/fsadvent2020/Test") | |
|> Array.map(fun file -> {ImagePath=file; Label=""}) | |
// Create IDataView for test images | |
let testImageIdv = ctx.Data.LoadFromEnumerable<ImageData>(testImages) | |
// Make predictions | |
let predictionIdv = model.Transform(testImageIdv) | |
// Display predictions | |
let predictions = ctx.Data.CreateEnumerable<ImagePrediction>(predictionIdv,false) | |
predictions |> Seq.iter(fun pred -> | |
printfn "%s is %s" (Path.GetFileNameWithoutExtension(pred.ImagePath)) pred.PredictedLabel) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment