-
-
Save lsauer/5514533 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
options(stringsAsFactors=FALSE) | |
library(limma) | |
library(parallel) | |
# fn returns the statistic of interest from a limma fit object. | |
bootstrip = function(mat, mod, fn, iterations=100, p_samples=0.5, mc.cores=12){ | |
stopifnot(nrow(mod) == ncol(mat)) | |
ta = mclapply(1:iterations, function(core_i){ | |
idx = sample.int(ncol(mat), p_samples * ncol(mat), replace=TRUE) | |
msub = mat[,idx,drop=TRUE] | |
fit = lmFit(msub, mod[idx,,drop=TRUE]) | |
fn(fit) | |
}, mc.cores=mc.cores) | |
beta = matrix(NA, nrow(mat), ncol=iterations) | |
for(i in 1:iterations){ | |
beta[,i] = ta[[i]] | |
} | |
colnames(beta) = paste0("sample_", 1:iterations) | |
rownames(beta) = rownames(mat) | |
beta | |
} | |
bootstrip.iter = function(mat, mod, fn, iterations=c(200, 5000, 1e5), p_samples=0.5, mc.cores=12, smooth.sd=0){ | |
lims = NA | |
subset = rep(TRUE, nrow(mat)) | |
for(it in iterations){ | |
message(paste("sampling", sum(subset), "rows", it, "times")) | |
beta = bootstrip(mat[subset,], mod, fn, it, p_samples, mc.cores) | |
if(any(is.na(lims))){ | |
lims = bootstrip.limits(beta) | |
} else { | |
lims[subset,] = bootstrip.limits(beta) | |
} | |
lims[subset, "samples"] = it | |
# repeat on this subset. with a larger number of samples | |
subset = (lims$pvalue <= (2 / it)) | |
if(sum(subset) < 2){ break } | |
} | |
lims$beta.orig = fn(lmFit(mat, mod)) | |
lims | |
} | |
bootstrip.limits = function(beta, probs=c(0.025, 0.975)){ | |
# pvalue is 2-tailed probability that the observed | |
# distribution overlaps 0. | |
pvalue = apply(beta, 1, function(row){ | |
val=ecdf(row)(0); max(min(val, 1-val) * 2, 1/length(row)) | |
}) | |
df = data.frame(pvalue) | |
df$beta.mean = apply(beta, 1, mean) | |
df$beta.median = apply(beta, 1, median) | |
for(p in probs){ | |
df[,paste0("beta.pct_", gsub(".", "p", p, fixed=T))] = | |
apply(beta, 1, function(row){ quantile(row, probs=p) }) | |
} | |
df | |
} | |
permute.residuals = function(mat, mod, mod0, iterations=100, p_samples=1, mc.cores=12){ | |
stopifnot(nrow(mod) == ncol(mat)) | |
reduced_lm = lmFit(mat, mod0) | |
reduced_residuals = residuals(reduced_lm, mat) | |
reduced_fitted = fitted(reduced_lm) | |
fit = lmFit(mat, mod) | |
size = p_samples * nrow(mod) | |
coef.name = setdiff(colnames(mod), colnames(mod0)) | |
beta.orig = coefficients(fit)[,coef.name] | |
rm(reduced_lm, fit); gc() | |
nc = ncol(reduced_residuals) | |
beta.list = mclapply(1:iterations, function(ix){ | |
# TODO: make sure cols from fit match mod when taking subset | |
if( p_samples < 1){ | |
sub_ids = sample.int(nc, size=size) | |
} else { | |
sub_ids = 1:nc | |
} | |
# take the original model and fitted data in same order, but | |
# shuffle residuals. | |
mat_sim = reduced_fitted[, sub_ids] + reduced_residuals[,sample(sub_ids)] | |
coefficients(lmFit(mat_sim, mod[sub_ids,]))[,coef.name] | |
}, mc.cores=mc.cores) | |
beta = matrix(NA, nrow(mat), ncol=iterations) | |
for(i in 1:iterations){ | |
beta[,i] = beta.list[[i]] | |
} | |
df = data.frame( | |
pvalue = unlist(lapply(1:nrow(beta), function(i){ | |
row = beta[i,] | |
val=ecdf(row)(beta.orig[i]); | |
max(min(val, 1-val) * 2, 1/length(row)) | |
})), beta.orig = beta.orig) | |
rownames(df) = rownames(mat) | |
df | |
} | |
permute.residuals.iter = function(mat, mod, mod0, iterations=c(200, 5000, 1e5, 2e6), | |
p_samples=1, mc.cores=12){ | |
stopifnot(nrow(mod) == ncol(mat)) | |
subset = rep(TRUE, nrow(mat)) | |
df = NA | |
for(it in iterations){ | |
message(paste("sampling", sum(subset), "rows", it, "times")) | |
if(any(is.na(df))){ | |
df = permute.residuals(mat, mod, mod0, it, p_samples, mc.cores) | |
} else { | |
# TODO: only sending in the most significant to permute. will bias results. | |
df[subset,] = permute.residuals(mat[subset,], mod, mod0, it, p_samples, mc.cores) | |
} | |
df[subset, "samples"] = it | |
# repeat on this subset. with a larger number of samples | |
subset = (df$pvalue <= (2 / it)) | |
if(sum(subset) == 0){ break } | |
} | |
df | |
} | |
#library(multtest) | |
#mult.permute = function(mat, mod, coef){ | |
# | |
# MTP(mat, Z=mod, test="lm.XvsZ", Z.incl=1:ncol(mod), Z.test=coef, | |
# get.adjp=TRUE, get.cr=TRUE) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment