Skip to content

Instantly share code, notes, and snippets.

Show Gist options
  • Save lseongjoo/a3bafd3cb276569a3b209b3eef867804 to your computer and use it in GitHub Desktop.
Save lseongjoo/a3bafd3cb276569a3b209b3eef867804 to your computer and use it in GitHub Desktop.
Instructions for CUDA v11.2 and cuDNN 8.1 installation on Ubuntu 20.04 for Pytorch 1.8 & Tensorflow 2.7.0
#!/bin/bash
### steps ####
# verify the system has a cuda-capable gpu
# download and install the nvidia cuda toolkit and cudnn
# setup environmental variables
# verify the installation
###
### to verify your gpu is cuda enable check
lspci | grep -i nvidia
### If you have previous installation remove it first.
sudo apt-get purge nvidia*
sudo apt remove nvidia-*
sudo rm /etc/apt/sources.list.d/cuda*
sudo apt-get autoremove && sudo apt-get autoclean
sudo rm -rf /usr/local/cuda*
# system update
sudo apt-get update
sudo apt-get upgrade
# install other import packages
sudo apt-get install g++ freeglut3-dev build-essential libx11-dev libxmu-dev libxi-dev libglu1-mesa libglu1-mesa-dev
# first get the PPA repository driver
sudo add-apt-repository ppa:graphics-drivers/ppa
sudo apt update
# install nvidia driver with dependencies
sudo apt install libnvidia-common-470
sudo apt install libnvidia-gl-470
sudo apt install nvidia-driver-470
sudo apt-key adv --fetch-keys http://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/7fa2af80.pub
echo "deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64 /" | sudo tee /etc/apt/sources.list.d/cuda.list
sudo apt-get update
# installing CUDA-11.2
sudo apt install cuda-11-2
# setup your paths
echo 'export PATH=/usr/local/cuda-11.2/bin:$PATH' >> ~/.bashrc
echo 'export LD_LIBRARY_PATH=/usr/local/cuda-11.2/lib64:$LD_LIBRARY_PATH' >> ~/.bashrc
source ~/.bashrc
sudo ldconfig
# install cuDNN v11.2
# For downloading cuDNN v11.2 you have to be regeistered here https://developer.nvidia.com/developer-program/signup
CUDNN_TAR_FILE="cudnn-11.2-linux-x64-v8.1.1.33.tgz"
wget https://developer.nvidia.com/compute/machine-learning/cudnn/secure/8.1.1.33/11.2_20210301/cudnn-11.2-linux-x64-v8.1.1.33.tgz
tar -xzvf ${CUDNN_TAR_FILE}
# copy the following files into the cuda toolkit directory.
sudo cp -P cuda/include/cudnn.h /usr/local/cuda-11.2/include
sudo cp -P cuda/lib64/libcudnn* /usr/local/cuda-11.2/lib64/
sudo chmod a+r /usr/local/cuda-11.2/lib64/libcudnn*
# Finally, to verify the installation, check
nvidia-smi
nvcc -V
# install Pytorch (an open source machine learning framework)
# I choose version 1.8.1 because it is stable and compatible with CUDA 11.2 Toolkit and cuDNN 8.1
pip3 install torch==1.8.1 torchvision==0.9.1
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment