-
-
Save ltbringer/b1dfdccc2e0449cb2276f4f742a1d413 to your computer and use it in GitHub Desktop.
tsne_class_errors
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import json | |
import string | |
import random | |
import colorsys | |
import operator as op | |
import numpy as np | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
from sklearn.manifold import TSNE | |
from sklearn.decomposition import PCA | |
from sklearn.feature_extraction.text import TfidfVectorizer | |
from sklearn.decomposition import TruncatedSVD | |
from matplotlib import offsetbox | |
lower_case = set(string.ascii_lowercase + string.whitespace) | |
def hsv2rgb(h,s,v): | |
return '#%02x%02x%02x' % tuple(round(i * 255) for i in colorsys.hsv_to_rgb(h,s,v)) | |
def label_color_generator(labels): | |
colmap = {} | |
for i, label in enumerate(labels): | |
h = np.random.uniform(low=0, high=0.99) | |
s = np.random.uniform(low=0.4, high=0.99) | |
v = np.random.uniform(low=0.60, high=0.99) | |
colmap[label] = hsv2rgb(h, s, v) | |
return colmap | |
def first_transcript(text): | |
if not text: | |
return "" | |
d = json.loads(text) | |
if d: | |
return d[0][0]["transcript"] | |
return "" | |
def label2color(label): | |
return colmap[label] | |
def fix_tags(tag): | |
if tag.startswith("_") and tag.endswith("_"): | |
return tag[1:-1] | |
return tag | |
def process(df): | |
df["color"] = df.tag.apply(label2color) | |
df["first_transcript"] = df.alternatives.apply(first_transcript) | |
df.alternatives = df.alternatives.apply(lambda x: " ".join([obj["transcript"] for utterance in json.loads(x) for obj in utterance])) | |
df["lang"] = df.alternatives.apply(lang_detect) | |
df["tag"] = df.tag.apply(fix_tags) | |
def df2tsne(df, feat_col, label_col): | |
vectors = TfidfVectorizer().fit_transform(df[feat_col]) | |
X_reduced = TruncatedSVD(n_components=50, random_state=0).fit_transform(vectors) | |
embeddings = TSNE(n_components=2, perplexity=40, verbose=2).fit_transform(X_reduced) | |
df["x"] = embeddings[:,0] | |
df["y"] = embeddings[:,1] | |
def plot_tsne(df, label_col, text_col, color_col): | |
indexmap = {} | |
for label, freq in df[label_col].value_counts().items(): | |
indexmap[label] = np.random.choice(df[df[label_col] == label].index, max((freq // 100), 1)) | |
fig = plt.figure(figsize=(10, 10)) | |
ax = plt.axes(frameon=False) | |
plt.setp(ax, xticks=(), yticks=()) | |
plt.subplots_adjust(left=0.0, bottom=0.0, right=1.0, top=0.9, | |
wspace=0.0, hspace=0.0) | |
operators = [op.add, op.sub] | |
for label in df[label_col].unique(): | |
label_slice = df[df[label_col] == label] | |
plt.scatter( | |
label_slice["x"], | |
label_slice["y"], | |
c=label_slice[color_col], | |
marker="x", | |
label=label | |
) | |
ax.legend() | |
for label, indexes in indexmap.items(): | |
for idx in indexes: | |
text = df[text_col].loc[idx] | |
x = df["x"].loc[idx] | |
y = df["y"].loc[idx] | |
x_op = random.choice(operators) | |
y_op = random.choice(operators) | |
xtext = x_op(x, 2) | |
ytext = y_op(y, 2) | |
ax.annotate(text, xy=(x, y), xytext=(xtext, ytext), arrowprops={"arrowstyle":"->", "color":"gray"}) | |
colmap = label_color_generator(df.tag.unique()) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment