Last active
August 29, 2015 14:15
-
-
Save lucainnocenti/8408fef73f716225f11c to your computer and use it in GitHub Desktop.
Some math notes
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
[toc] | |
Mittag-Leffler expansions | |
============ | |
Let $f(z)$ be a complex function with an infinite number of *simple* poles $z_n$, and holomorphic at the origin. Suppose also that the poles are ordered in the following way | |
$$ 0 < | z_1| \leq | z_2 | \le \dots \le | z_n| \le \dots $$ | |
If | |
1. $\mathcal{C}_n$ is a contour encircling all poles up to $z_n$, | |
2. $f$ is uniformly bounded on $\mathcal C_n$: | |
$$ \exists A \in \mathbb{R} \,\, | \quad \forall (n \in \mathbb{N}, \, z \in \mathcal C_n ), \,\, | f(z)| < A. $$ | |
Then $f$ admits the following Mittag-Leffler expansion: | |
$$ f(x) = f(0) + \sum_{n=1}^\infty \alpha_n \left( \frac{1}{z-z_n} + \frac{1}{z_n} \right). $$ | |
Examples of Mittag-Leffler expansions | |
-------------------------- | |
- $$ \csc(z) \equiv \frac{1}{\sin(z)} | |
= \frac{1}{z} + \sum_{n \neq 0} (-1)^n \left( \frac{1}{z-k\pi} + \frac{1}{k\pi} \right) | |
= \frac{1}{z}+ \sum_{n=1}^\infty (-1)^n \frac{2z}{z^2 - n^2 \pi^2}$$ | |
- $$ \cot(z) \equiv \frac{\cos (z)}{\sin (z)} | |
= \frac{1}{z} + \sum_{n \neq 0} \left( \frac{1}{z-n\pi} + \frac{1}{n\pi} \right) | |
= \frac{1}{z} + \sum_{n=1}^\infty \frac{2z}{z^2 - n^2\pi^2}$$ | |
- $$ \frac{1}{z \sin(z)} | |
= \frac{1}{z^2} + \sum_{n \neq 0} \frac{(-1)^n}{\pi n(z-\pi n)} | |
= \frac{1}{z^2} + \sum_{n=1}^\infty \frac{(-1)^n}{n\pi} \frac{2z}{z^2 - \pi^2 n^2}$$ | |
- $$ \sum_{n \neq 0} (-1)^n g(n) = - \pi \sum_i \operatorname{Res}_{z=z_i} \frac{g(z)}{\sin(\pi z)} $$ | |
- $$ \sum_{n \neq 0} g(n) = - \pi \sum_i \operatorname{Res}_{z=z_i} g(z) \cot(\pi z) $$ | |
Series summed with the Sommerfeld-Watson method: | |
Infinite products | |
============= | |
- $$ \tag 1 \prod_{n \neq 0,k} \frac{n-k}{n} = (-1)^{k+1}, \quad k \in \mathbb{Z}. $$ | |
- Proof: | |
$$ \prod_{n \neq 0,k} \frac{n-k}{n} | |
= \lim_{N \to \infty} \frac | |
{(-N-k)(-N-k+1)\cdots(-k-1)(-k+1)\cdots(-1)(+1)\cdots(N-k)} | |
{-N(-N+1)\cdots(-1)(+1)\cdots(k-1)(k+1)\cdots N} | |
\\ = \frac{(-1)^{N+k}}{-k} \lim_{N \to \infty} \left( \frac | |
{(N+k)! (N-k)!} | |
{-N(-N+1)\cdots(-1)(+1)\cdots(k-1)(k+1)\cdots N} \right) | |
\\ = \frac{(-1)^{N+k}}{-k} k(-1)^N \lim_{N \to \infty} \frac | |
{(N+k)! (N-k)!} | |
{(N!)^2} | |
= (-1)^{k+1} $$ | |
- math.SE questions: | |
- this same proof: http://math.stackexchange.com/a/1143361/173147 | |
- slightly different proof: http://math.stackexchange.com/a/1143205/173147 | |
- $$\prod_{{n\geq1,\, n\neq k}} \left(1-\frac{k^{2}}{n^{2}}\right) = \frac{\left(-1\right)^{k-1}}{2}, \quad k \in \mathbb{Z}. $$ | |
- math.SE question: http://math.stackexchange.com/q/1142703/173147 | |
Weierstrass product expansion | |
------------- | |
Consider the Mittag-Leffler pole expansion of a meromorphic function $g(z)$: | |
$$ g(z) = g(0) + \sum_n \alpha_n \left( \frac{1}{z-z_n} + \frac{1}{z_n} \right). $$ | |
Taking now $g(z) = f'(z)/f(z) \equiv \partial_L f(z)$ leads to | |
$$ \frac{f'(z)}{f(z)} = \frac{f'(0)}{f(0)} + \sum_n \alpha_n \left( \frac{1}{z-z_n} + \frac{1}{z_n} \right), $$ | |
which integrating from $z=0$ to $z$ and taking the exponential gives | |
$$ f(z)=f(0) e^{\frac{z f'(0)}{f(0)}} \prod_n e^{ \alpha_n z/z_n} \left( 1 - \frac{z}{z_n} \right), $$ | |
where $\alpha_n$ is the order of the $n$-th zero of $f$. | |
###Examples of product expansions: | |
- $$ \sin(z) | |
= z \prod_{n \neq 0} e^{\frac{z}{n\pi}} \left( 1 - \frac{z}{n\pi} \right) | |
= z \prod_{n=1}^\infty \left( 1 - \frac{z^2}{n^2\pi^2} \right)$$ | |
- $$ \cos(z) | |
= \prod_{n \in \mathbb{Z}} e^{\frac{2z}{(2n+1)\pi}} \left( 1 - \frac{2z}{\pi(2n+1)} \right) | |
= \prod_{n=1}^\infty \left( 1 - \frac{4z^2}{(2n-1)^2\pi^2} \right) $$ | |
Ordinary differential equations (ODEs) | |
============== | |
First order, homogeneous ODEs | |
------------ | |
The general form of an homogeneous, first order, ordinary differential equation is: | |
$$ u'(x) + p(x)u(x) = 0, $$ | |
with general solution (obtained for example integrating by parts): | |
$$ u(x) = A e^{-\int^x p}, $$ | |
with $A$ a constant determined by the initial conditions. | |
More specifically, the solution of the Cauchy initial value problem | |
$$ \begin{cases} u' + p(x) u = 0 \\ u(x_0) = u_0 \end{cases} $$ | |
is $$ u(x) = u(x_0) \exp \left( - \int_{x_0}^x p(t) dt \right) .$$ | |
Second-Order Linear ODEs | |
-------- | |
### Bessel's Equation | |
The Bessel's differential equation is the second-order ordinary differential equation given by | |
$$ x^2 y'' + x y' + (x^2-\alpha^2)y = 0, $$ | |
where $\alpha$ is an arbitrary complex number, called the *order* of the Bessel's function. | |
- The canonical solutions of the Bessel's differential equation are the [Bessel's functions](https://en.wikipedia.org/wiki/Bessel_function). | |
- The most important cases are for $\alpha$ integer or half-integer. For $\alpha$ an integer we talk of **cylindrical Bessel's functions**. If $\alpha$ is half-integer we talk of **spherical Bessel's functions**. | |
- The Bessel's differential equation has a regular singularity at $z=0$ and an irregular singularity at $z=\infty$. | |
- From the indicial equation | |
$$ \rho^2 - n^2 = 0,$$ | |
if $\rho=n$ the solution is | |
$$ y(z) = c_0 \, x^n \sum_{k=0}^\infty (-1)^k \frac{n!}{k!(n+k)!} \left( \frac{z}{2} \right)^{2k} $$ | |
- f | |
Series Solution to ODEs (Frobenius' Method) | |
--------------- | |
Resources on the Frobenius method: | |
- [Wikipedia article](https://en.wikipedia.org/wiki/Frobenius_method) | |
###Linear harmonic oscillator | |
Indicial equation: $ \rho (\rho-1) = 0$. | |
Papperitz equation: http://www.damtp.cam.ac.uk/user/stcs/courses/fcm/handouts/papperitz.pdf | |
Other things | |
====== | |
- [math.SE answer](http://math.stackexchange.com/a/1149667/173147): example of real-valued function infinitely differentiable at a point but *not* expressible as a power series at that point: | |
$$f(x) = \begin{cases} e^{-1/x^2}, & x \neq 0 \\ | |
0, & x = 0 \end{cases}$$ |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment