Last active
July 23, 2024 04:24
-
-
Save lucataco/579b080987c34111eeb44cde4778ef4d to your computer and use it in GitHub Desktop.
mps-fine-tune-llama3b-v2
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import random | |
random.seed(42) | |
torch.manual_seed(42) | |
from transformers import LlamaTokenizer, LlamaForCausalLM | |
model_path = 'openlm-research/open_llama_3b_v2' | |
tokenizer = LlamaTokenizer.from_pretrained(model_path, legacy=True); | |
base_model = LlamaForCausalLM.from_pretrained(model_path); | |
from peft import LoraConfig, PeftModel | |
lora_config = LoraConfig( | |
r=64, | |
lora_alpha=32, | |
lora_dropout=0.05, | |
bias="none", | |
task_type="CAUSAL_LM", | |
) | |
model = PeftModel(base_model, lora_config, adapter_name="Shakespeare") | |
device = torch.device("mps") | |
model.to(device); | |
import os | |
import requests | |
file_name = "shakespeare.txt" | |
url = "https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt" | |
if not os.path.isfile(file_name): | |
data = requests.get(url) | |
with open(file_name, 'w') as f: | |
f.write(data.text) | |
from transformers import TextDataset | |
train_dataset = TextDataset(tokenizer=tokenizer, file_path=file_name, block_size=128)[:256] | |
from transformers import Trainer, TrainingArguments | |
training_args = TrainingArguments( | |
output_dir="output", | |
overwrite_output_dir=True, | |
num_train_epochs=10, | |
per_device_train_batch_size=32, | |
evaluation_strategy='no', | |
) | |
from transformers import DataCollatorForLanguageModeling | |
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False) | |
trainer = Trainer( | |
model=model, | |
args=training_args, | |
data_collator=data_collator, | |
train_dataset=train_dataset, | |
) | |
def generate_response(prompt_text, model, tokenizer, max_length=30, num_return_sequences=1): | |
input_ids = tokenizer.encode(prompt_text, return_tensors="pt").to('mps') | |
attention_mask = torch.ones(input_ids.shape, dtype=torch.long, device='mps') | |
output_sequences = model.generate( | |
input_ids=input_ids, | |
attention_mask=attention_mask, | |
max_length=max_length, | |
num_return_sequences=num_return_sequences, | |
no_repeat_ngram_size=2, | |
) | |
responses = [] | |
for response_id in output_sequences: | |
response = tokenizer.decode(response_id, skip_special_tokens=True) | |
responses.append(response) | |
return responses | |
prompt_text="Uneasy lies the head that wears a crown." | |
responses = generate_response(prompt_text, model, tokenizer) | |
for resp in responses: | |
print(resp) | |
trainer.train() | |
responses = generate_response(prompt_text, model, tokenizer, max_length=50) | |
for resp in responses: | |
print(resp) | |
save_path = "merged_fine_tune_openllama_3b_v2_shakespeare" | |
tokenizer.save_pretrained(save_path) | |
merged_model = model.merge_and_unload() | |
merged_model.save_pretrained(save_path) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment