Created
December 3, 2019 14:23
-
-
Save lucidfrontier45/6666dfadb47caf0bc9ddfe8a22523799 to your computer and use it in GitHub Desktop.
Stan Coin flipping Test
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| data { | |
| int<lower=0> N; | |
| } | |
| transformed data { | |
| int<lower=0> n; | |
| n = N / 2; | |
| } | |
| parameters { | |
| real<lower=0,upper=1> p; | |
| } | |
| model { | |
| N ~ binomial(N * 2, p); | |
| } |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| import pickle | |
| from hashlib import md5 | |
| from pathlib import Path | |
| import numpy as np | |
| from pystan import StanModel | |
| def StanModel_cache(model_code, model_name="anon_model", model_dir="~/.stan"): | |
| model_dir = Path(model_dir).expanduser() | |
| if not model_dir.exists(): | |
| model_dir.mkdir() | |
| code_hash = md5(model_code.encode('ascii')).hexdigest() | |
| if model_name is None: | |
| cache_fn = 'cached-model-{}.pkl'.format(code_hash) | |
| else: | |
| cache_fn = 'cached-{}-{}.pkl'.format(model_name, code_hash) | |
| cache_file: Path = model_dir.joinpath(cache_fn) | |
| if cache_file.exists(): | |
| print("use cached stan model") | |
| with cache_file.open("rb") as fp: | |
| sm = pickle.load(fp) | |
| else: | |
| print("compile stan model") | |
| sm = StanModel(model_code=model_code, model_name=model_name) | |
| with cache_file.open(mode="wb") as fp: | |
| pickle.dump(sm, fp, pickle.HIGHEST_PROTOCOL) | |
| return sm | |
| def main(): | |
| model = StanModel_cache(open("model.stan").read()) | |
| for N in (10, 50, 100, 200, 300, 500, 1000): | |
| res = model.sampling(data={"N": N}) | |
| p = res["p"] | |
| s = np.sum((0.45 < p) & (p < 0.55)) / len(p) | |
| print(N, s) | |
| if s > 0.95: | |
| break | |
| if __name__ == "__main__": | |
| main() |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment