Created
March 17, 2016 08:15
-
-
Save lucidfrontier45/c31a69bd97de20961177 to your computer and use it in GitHub Desktop.
Spark LDA benchmark
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| package com.frontier45.LDABench | |
| import org.apache.spark.mllib.clustering.LDA | |
| import org.apache.spark.mllib.linalg.Vectors | |
| import org.apache.spark.{SparkContext, SparkConf} | |
| import scala.util.Random | |
| /** | |
| * Created by du on 3/15/16. | |
| */ | |
| object LDABench { | |
| case class RunArgs( | |
| T: Int = 100000, | |
| W: Int = 10000, | |
| D: Int = 10000, | |
| K: Int = 10, | |
| n_partitions: Int = 100, | |
| n_iterations: Int = 10, | |
| spark_master: Option[String] = None, | |
| optimizer: String = "em", | |
| use_cache: Boolean = false, | |
| checkpoint_interval: Int = 10 | |
| ) | |
| def main(args: Array[String]): Unit = { | |
| val parser = new scopt.OptionParser[RunArgs]("LDATest") { | |
| opt[Int]('t', "num_trx").valueName("NUM_TRX") | |
| .action((x, c) => c.copy(T = x)) | |
| opt[Int]('w', "num_words").valueName("NUM_WORDS") | |
| .action((x, c) => c.copy(W = x)) | |
| opt[Int]('d', "num_documents").valueName("NUM_DOCUMENTS") | |
| .action((x, c) => c.copy(D = x)) | |
| opt[Int]('k', "num_topics").valueName("NUM_TOPICS") | |
| .text("Number of Topics") | |
| .action((x, c) => c.copy(K = x)) | |
| opt[Int]("num-iterations").valueName("NUM_ITERATIONS") | |
| .text("Number of iterations") | |
| .action((x, c) => c.copy(n_iterations = x)) | |
| opt[Int]("num-partitions").valueName("NUM_PARTITIONS") | |
| .text("Number of Partitions") | |
| .action((x, c) => c.copy(n_partitions = x)) | |
| opt[String]("spark-master").valueName("URL") | |
| .text("Spark Master URL") | |
| .action((x, c) => c.copy(spark_master = Some(x))) | |
| opt[String]("optimizer").valueName("OPTIMIZER") | |
| .action((x, c) => c.copy(optimizer = x)) | |
| opt[Unit]("use-cache") | |
| .action((_, c) => c.copy(use_cache = true)) | |
| opt[Int]('c', "checkpoint-interval").valueName("Interval") | |
| .action((x, c) => c.copy(checkpoint_interval = x)) | |
| } | |
| parser.parse(args, RunArgs()) | |
| .map(run) | |
| .getOrElse(System.exit(1)) | |
| } | |
| def run(args: RunArgs): Unit = { | |
| val conf = new SparkConf() | |
| conf.getOption("spark.app.name").getOrElse(conf.setAppName("com/freebit/LDABench")) | |
| conf.getOption("spark.master").getOrElse( | |
| conf.setMaster(args.spark_master.getOrElse("local[*]")) | |
| ) | |
| implicit val sc = new SparkContext(conf) | |
| startJob(args) | |
| sc.stop() | |
| } | |
| def startJob(args: RunArgs)(implicit sc: SparkContext): Unit = { | |
| val documents = sc.parallelize(1 to args.n_partitions) | |
| .repartition(args.n_partitions) | |
| .flatMap { i => | |
| val r = new Random() | |
| val itr = 1 to (args.T / args.n_partitions) | |
| itr.toStream.map(n => (r.nextInt(args.D), r.nextInt(args.W), r.nextInt(10))) | |
| }.map { case (d, w, c) => ((d, w), c) } | |
| .reduceByKey(_ + _) | |
| .map { case ((d, w), c) => (d, (w, c.toDouble)) } | |
| .groupByKey() | |
| .map(t => (t._1.toLong, Vectors.sparse(args.W, t._2.toSeq))) | |
| .repartition(args.n_partitions) | |
| if (args.use_cache) { | |
| documents.cache() | |
| val c = documents.count() | |
| println("count = %d".format(c)) | |
| } | |
| val lda = new LDA() | |
| .setK(args.K) | |
| .setMaxIterations(args.n_iterations) | |
| .setOptimizer(args.optimizer) | |
| .setCheckpointInterval(args.checkpoint_interval) | |
| lda.run(documents) | |
| println("OK") | |
| } | |
| } |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment