Created
May 26, 2012 23:18
-
-
Save lucidjargon/2795591 to your computer and use it in GitHub Desktop.
Brownian Distance Covariance as described in http://arxiv.org/pdf/0803.4101.pdf for scalar values. Extensible to vector valued variables with a few character strokes
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
let foldRow2D, foldCol2D = 1, 0 | |
let inline (@@) (m: 'a [,]) index = Array.Parallel.init (m.GetLength(1)) (fun i -> m.[index, i]) | |
let inline (@@@) (m: 'a [,]) index = Array.Parallel.init (m.GetLength(0)) (fun i -> m.[i, index]) | |
let inline cIndex ind k i (m:'a [,]) = if ind = 1 then m.[k,i] else m.[i,k] | |
let arr2DFoldAt r k (m : 'a [,]) f seed = | |
let top = m.GetLength(r) | |
let rec fold state = function | |
| i when i = top -> state | |
| i -> fold (f state (cIndex r k i m)) (i + 1) | |
fold seed 0 | |
let arr2DFold (m : 'a [,]) f seed = | |
let top = m.GetLength(0) | |
let rec fold state = function | i when i = top -> state | |
| i -> fold (arr2DFoldAt 1 i m f state) (i+1) | |
fold seed 0 | |
let distCov (v1:float[]) (v2:float[]) same = | |
let n = v1.Length | |
let nf = float n | |
let denum = nf ** 2. | |
let distMatrix (v:float[]) = Array2D.init v.Length v.Length (fun k l -> abs (v.[k] - v.[l])) | |
let rowMean (m:float[,]) k = (arr2DFoldAt 1 k m (+) 0.)/nf | |
let colMean (m:float[,]) l = (arr2DFoldAt 0 l m (+) 0.)/nf | |
let matrixMean (m:float[,]) = (arr2DFold m (+) 0.) / denum | |
let centredDist (v:float[]) = | |
let distm = distMatrix v | |
let meanoverall = matrixMean distm | |
let C = Array2D.create n n 0. | |
Threading.Tasks.Parallel.For(0, n, fun i -> | |
let curRowMean = rowMean distm i | |
for j in 0..n - 1 do | |
C.[i,j] <- distm.[i,j] - curRowMean - (colMean distm j) + meanoverall ) |> ignore | |
C | |
let A,B = | |
if same then let A2 = centredDist v1 in A2, A2 | |
else let AB = [| async {return centredDist v1} | |
async {return centredDist v2} |] |> Async.Parallel |> Async.RunSynchronously | |
AB.[0], AB.[1] | |
let _,_,msum = arr2DFold A (fun (i,j,curSum) value -> let nsum = value * B.[i,j] + curSum | |
if j = n - 1 then i+1, 0,nsum else i, j+1,nsum) (0,0,0.) | |
msum / denum | |
let distCorr v1 v2 = | |
let VXY = [| async { return distCov v1 v1 true } | |
async { return distCov v2 v2 true} |] |> Async.Parallel |> Async.RunSynchronously | |
let vsig = VXY.[0] * VXY.[1] | |
if vsig = 0. then 0. | |
else sqrt((distCov v1 v2 false) / sqrt vsig) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment