Created
December 8, 2022 20:14
-
-
Save lucidrains/5193d38d1d889681dd42feb847f1f6da to your computer and use it in GitHub Desktop.
ViT, but you can pass in images with patches masked out
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import torch | |
import torch.nn.functional as F | |
from torch import nn | |
from einops import rearrange, repeat | |
from einops.layers.torch import Rearrange | |
# helpers | |
def pair(t): | |
return t if isinstance(t, tuple) else (t, t) | |
# classes | |
class PreNorm(nn.Module): | |
def __init__(self, dim, fn): | |
super().__init__() | |
self.norm = nn.LayerNorm(dim) | |
self.fn = fn | |
def forward(self, x, **kwargs): | |
return self.fn(self.norm(x), **kwargs) | |
class FeedForward(nn.Module): | |
def __init__(self, dim, hidden_dim, dropout = 0.): | |
super().__init__() | |
self.net = nn.Sequential( | |
nn.Linear(dim, hidden_dim), | |
nn.GELU(), | |
nn.Dropout(dropout), | |
nn.Linear(hidden_dim, dim), | |
nn.Dropout(dropout) | |
) | |
def forward(self, x): | |
return self.net(x) | |
class Attention(nn.Module): | |
def __init__(self, dim, heads = 8, dim_head = 64, dropout = 0.): | |
super().__init__() | |
inner_dim = dim_head * heads | |
project_out = not (heads == 1 and dim_head == dim) | |
self.heads = heads | |
self.scale = dim_head ** -0.5 | |
self.attend = nn.Softmax(dim = -1) | |
self.dropout = nn.Dropout(dropout) | |
self.to_qkv = nn.Linear(dim, inner_dim * 3, bias = False) | |
self.to_out = nn.Sequential( | |
nn.Linear(inner_dim, dim), | |
nn.Dropout(dropout) | |
) if project_out else nn.Identity() | |
def forward(self, x, mask = None): | |
qkv = self.to_qkv(x).chunk(3, dim = -1) | |
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> b h n d', h = self.heads), qkv) | |
dots = torch.matmul(q, k.transpose(-1, -2)) * self.scale | |
if mask is not None: | |
mask = rearrange(mask, 'b ... -> b (...)') | |
mask = F.pad(mask, (x.shape[-2] - mask.shape[-1], 0), value = True) | |
dots = dots.masked_fill(~mask, -torch.finfo(dots.dtype).max) | |
attn = self.attend(dots) | |
attn = self.dropout(attn) | |
out = torch.matmul(attn, v) | |
out = rearrange(out, 'b h n d -> b n (h d)') | |
return self.to_out(out) | |
class Transformer(nn.Module): | |
def __init__(self, dim, depth, heads, dim_head, mlp_dim, dropout = 0.): | |
super().__init__() | |
self.layers = nn.ModuleList([]) | |
for _ in range(depth): | |
self.layers.append(nn.ModuleList([ | |
PreNorm(dim, Attention(dim, heads = heads, dim_head = dim_head, dropout = dropout)), | |
PreNorm(dim, FeedForward(dim, mlp_dim, dropout = dropout)) | |
])) | |
def forward(self, x, mask = None): | |
for attn, ff in self.layers: | |
x = attn(x, mask = mask) + x | |
x = ff(x) + x | |
return x | |
class ViT(nn.Module): | |
def __init__(self, *, image_size, patch_size, num_classes, dim, depth, heads, mlp_dim, pool = 'cls', channels = 3, dim_head = 64, dropout = 0., emb_dropout = 0.): | |
super().__init__() | |
image_height, image_width = pair(image_size) | |
patch_height, patch_width = pair(patch_size) | |
assert image_height % patch_height == 0 and image_width % patch_width == 0, 'Image dimensions must be divisible by the patch size.' | |
num_patches = (image_height // patch_height) * (image_width // patch_width) | |
patch_dim = channels * patch_height * patch_width | |
assert pool in {'cls', 'mean'}, 'pool type must be either cls (cls token) or mean (mean pooling)' | |
self.to_patch_embedding = nn.Sequential( | |
Rearrange('b c (h p1) (w p2) -> b (h w) (p1 p2 c)', p1 = patch_height, p2 = patch_width), | |
nn.Linear(patch_dim, dim), | |
) | |
self.pos_embedding = nn.Parameter(torch.randn(1, num_patches + 1, dim)) | |
self.cls_token = nn.Parameter(torch.randn(1, 1, dim)) | |
self.dropout = nn.Dropout(emb_dropout) | |
self.transformer = Transformer(dim, depth, heads, dim_head, mlp_dim, dropout) | |
self.pool = pool | |
self.to_latent = nn.Identity() | |
self.mlp_head = nn.Sequential( | |
nn.LayerNorm(dim), | |
nn.Linear(dim, num_classes) | |
) | |
def forward(self, img, mask = None): | |
x = self.to_patch_embedding(img) | |
b, n, _ = x.shape | |
cls_tokens = repeat(self.cls_token, '1 1 d -> b 1 d', b = b) | |
x = torch.cat((cls_tokens, x), dim=1) | |
x += self.pos_embedding[:, :(n + 1)] | |
x = self.dropout(x) | |
x = self.transformer(x, mask = mask) | |
x = x.mean(dim = 1) if self.pool == 'mean' else x[:, 0] | |
x = self.to_latent(x) | |
return self.mlp_head(x) | |
if __name__ == '__main__': | |
x = torch.randn(1, 3, 256, 256) | |
mask = torch.ones(1, 16, 16).bool() | |
vit = ViT( | |
dim = 512, | |
depth = 6, | |
heads = 8, | |
mlp_dim = 1024, | |
image_size = 256, | |
patch_size = 16, | |
num_classes = 10 | |
) | |
out = vit(x, mask = mask) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment