Last active
January 13, 2019 16:01
-
-
Save lucifermorningstar1305/558f3e228d962816ac9abc4e983f70ff to your computer and use it in GitHub Desktop.
vgg architecture
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
def convolutional_neural_network(x): | |
weights = {'W_conv1' : tf.Variable(tf.random_normal([3,3,3,64])), | |
'W_conv2' : tf.Variable(tf.random_normal([3,3,64,64])), | |
'W_conv3' : tf.Variable(tf.random_normal([3,3,64,128])), | |
'W_conv4' : tf.Variable(tf.random_normal([3,3,128,128])), | |
'W_conv5': tf.Variable(tf.random_normal([3,3,128,256])), | |
'W_conv6' : tf.Variable(tf.random_normal([3,3,256,256])), | |
'W_conv7' : tf.Variable(tf.random_normal([3,3,256,256])), | |
'W_conv8' : tf.Variable(tf.random_normal([3,3,256,512])), | |
'W_conv9' : tf.Variable(tf.random_normal([3,3,512,512])), | |
'W_conv10' : tf.Variable(tf.random_normal([3,3,512,512])), | |
'W_fc1' : tf.Variable(tf.random_normal([2*2*512, 1024])), | |
'W_fc2' : tf.Variable(tf.random_normal([1024, 1024])), | |
'W_fc3' : tf.Variable(tf.random_normal([1024, n_classes]))} | |
biases = {'b_conv1' : tf.Variable(tf.random_normal([64])), | |
'b_conv2' : tf.Variable(tf.random_normal([64])), | |
'b_conv3' : tf.Variable(tf.random_normal([128])), | |
'b_conv4' : tf.Variable(tf.random_normal([128])), | |
'b_conv5' : tf.Variable(tf.random_normal([256])), | |
'b_conv6' : tf.Variable(tf.random_normal([256])), | |
'b_conv7' : tf.Variable(tf.random_normal([256])), | |
'b_conv8' : tf.Variable(tf.random_normal([512])), | |
'b_conv9' : tf.Variable(tf.random_normal([512])), | |
'b_conv10' : tf.Variable(tf.random_normal([512])), | |
'b_fc1' : tf.Variable(tf.random_normal([1024])), | |
'b_fc2' : tf.Variable(tf.random_normal([1024])), | |
'b_fc3' : tf.Variable(tf.random_normal([n_classes]))} | |
x = tf.reshape(x, [-1, 32, 32, 3]) | |
# Conv1 | |
conv1 = tf.nn.relu(conv2d(x, weights['W_conv1']) + biases['b_conv1']) | |
# Conv2 | |
conv2 = tf.nn.relu(conv2d(conv1, weights['W_conv2']) + biases['b_conv2']) | |
# Max pool | |
conv2 = maxpool2d(conv2) | |
# Conv3 | |
conv3 = tf.nn.relu(conv2d(conv2, weights['W_conv3']) + biases['b_conv3']) | |
# Conv4 | |
conv4 = tf.nn.relu(conv2d(conv3, weights['W_conv4']) + biases['b_conv4']) | |
# maxpool | |
conv4 = maxpool2d(conv4) | |
# Conv5 | |
conv5 = tf.nn.relu(conv2d(conv4, weights['W_conv5']) + biases['b_conv5']) | |
#Conv6 | |
conv6 = tf.nn.relu(conv2d(conv5, weights['W_conv6']) + biases['b_conv6']) | |
#Conv 7 | |
conv7 = tf.nn.relu(conv2d(conv6, weights['W_conv7']) + biases['b_conv7']) | |
# max pool | |
conv7 = maxpool2d(conv7) | |
#Conv 8 | |
conv8 = tf.nn.relu(conv2d(conv7, weights['W_conv8']) + biases['b_conv8']) | |
#Conv9 | |
conv9 = tf.nn.relu(conv2d(conv8, weights['W_conv9']) + biases['b_conv9']) | |
#Conv10 | |
conv10 = tf.nn.relu(conv2d(conv9, weights['W_conv10']) + biases['b_conv10']) | |
# max pool | |
conv10 = maxpool2d(conv10) | |
#fc1 | |
fc1 = tf.reshape(conv10, [-1, 2*2*512]) | |
fc1 = tf.nn.relu(tf.matmul(fc1, weights['W_fc1']) + biases['b_fc1']) | |
fc1 = tf.nn.dropout(fc1, keep_rate) | |
#fc2 | |
fc2 = tf.nn.relu(tf.matmul(fc1, weights['W_fc2']) + biases['b_fc2']) | |
fc2 = tf.nn.dropout(fc2, keep_rate) | |
#Output Layer | |
output = tf.nn.softmax(tf.matmul(fc2, weights['W_fc3']) + biases['b_fc3']) | |
return output |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment