Skip to content

Instantly share code, notes, and snippets.

View lucifermorningstar1305's full-sized avatar
πŸ‘¨β€πŸ’»
Always Coding

Adityam Ghosh lucifermorningstar1305

πŸ‘¨β€πŸ’»
Always Coding
View GitHub Profile
@lucifermorningstar1305
lucifermorningstar1305 / sobel_edge.py
Created January 4, 2020 14:38
Sobel Edge Filter Algorithm
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
Hx = np.array([[1,0,-1], [2,0,-2],[1,0,-1]], dtype=np.float32)
Hy = np.array([[-1,-2,-1],[0,0,0],[1,2,1]], dtype=np.float32)
Gx = scipy.signal.convolve2d(Gm, Hx, mode ='same')
Gy = scipy.signal.convolve2d(Gm,Hy,mode = 'same')
G = (Gx*Gx + Gy*Gy) ** 0.5
@lucifermorningstar1305
lucifermorningstar1305 / gaussian_filter.py
Created January 4, 2020 13:01
Gaussian Filter algorithm
Hg = np.zeros((20,20))
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
for i in range(20):
for j in range(20):
Hg[i,j] = np.exp(-((i-10) ** 2 + (j-10)**2)/10)
gaussian_blur = scipy.signal.convolve2d(gray, Hg, mode='same')
gray_high = gray - gaussian_blur
gray_enhanced = gray + 0.025 * gray_high
@lucifermorningstar1305
lucifermorningstar1305 / median_filter.py
Created January 4, 2020 12:09
Median Filter Application
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
Gm = cv2.medianBlur(gray,3)
imgs = np.array([gray, Gm])
labels = ['Original','Filtered']
for i in range(1, column*row+1):
ax = fig.add_subplot(row,column,i)
ax.set_title(labels[i-1])
plt.imshow(imgs[i-1], cmap='gray')
plt.show()
@lucifermorningstar1305
lucifermorningstar1305 / mean_filter.py
Created January 4, 2020 11:10
Mean Filter algorithm
Mean_filter = np.array([[1,1,1], [1,1,1], [1,1,1]])/float(9)
Gm = scipy.signal.convolve2d(gray,Mean_filter,mode='same')
plt.imshow(Gm,cmap='gray')
plt.show()
activation_function = lambda x: 1.0/(1.0 + np.exp(-x))
input = np.random.randn(3,1)
W1 = np.random.randn(None, 1)
W2 = np.random.randn(None,1)
W3 = np.random.randn(None,1)
b1 = np.zeros(1)
b2 = np.zeros(1)
b3 = np.zeros(1)
hidden_1 = activation(np.dot(W1, input) + b1)
hidden_2 = activation(np.dot(W2, W1) + b2)
@lucifermorningstar1305
lucifermorningstar1305 / vgg_cifar.py
Last active January 13, 2019 16:01
vgg architecture
def convolutional_neural_network(x):
weights = {'W_conv1' : tf.Variable(tf.random_normal([3,3,3,64])),
'W_conv2' : tf.Variable(tf.random_normal([3,3,64,64])),
'W_conv3' : tf.Variable(tf.random_normal([3,3,64,128])),
'W_conv4' : tf.Variable(tf.random_normal([3,3,128,128])),
'W_conv5': tf.Variable(tf.random_normal([3,3,128,256])),
'W_conv6' : tf.Variable(tf.random_normal([3,3,256,256])),
'W_conv7' : tf.Variable(tf.random_normal([3,3,256,256])),
'W_conv8' : tf.Variable(tf.random_normal([3,3,256,512])),
'W_conv9' : tf.Variable(tf.random_normal([3,3,512,512])),