Last active
May 10, 2020 11:40
-
-
Save luispedro/1f423ca4304fa3c6b10b0e6ecde34bee to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# %matplotlib qt | |
import numpy as np | |
import seaborn as sns | |
from matplotlib import pyplot as plt | |
from matplotlib import style | |
style.use('default') | |
TOTAL_POP = 100_000 | |
MAX_ITERS = 100_000 | |
rho = 0.5 | |
gamma = 0.25 | |
delta = 0.25 | |
beta = 0.25 # Not in their paper, but this seems to fit | |
def simul(N, xs, sigma): | |
# We start with 50 infected individuals, 25 in each class | |
S = N - 50 | |
E = np.array([25., 25.]) | |
I = np.array([25., 25.]) | |
R = np.array([0., 0.]) | |
Evol = [] | |
for _ in range(MAX_ITERS): | |
EIeff = np.sum(xs * (rho * E + I) * N/TOTAL_POP) | |
for xi,xf in enumerate(xs): | |
lam = beta / N[xi] * EIeff | |
dS = - lam * xf * S[xi] | |
dE = lam * xf * S[xi] - delta * E[xi] | |
dI = delta * E[xi] - gamma * I[xi] | |
dR = gamma * I[xi] | |
S[xi] += dS | |
E[xi] += dE | |
I[xi] += dI | |
R[xi] += dR | |
dS0 = sigma * (S[1] - S[0]) | |
S += [dS0, -dS0] | |
Evol.append((S.copy(), E.copy(), I.copy(), R.copy())) | |
# Do at least 1 year, then stop once nobody is getting infected. | |
if len(Evol) > 365 and np.abs(Evol[-1][0] - Evol[-2][0]).sum() < 1: | |
break | |
return np.array(Evol) | |
for title,args in [ | |
('Traditional', (np.array([TOTAL_POP/2, TOTAL_POP/2], float), np.array([1,1], float), 0)), | |
('Two classes (no big diff)', (np.array([TOTAL_POP/2, TOTAL_POP/2], float), np.array([0.5,1.5], float), 0)), | |
('Two classes (minority)', (np.array([TOTAL_POP/5* 4, TOTAL_POP/5], float), np.array([0.25,4.0], float), 0)), | |
('Two classes (minority; 1% shift)', (np.array([TOTAL_POP/5* 4, TOTAL_POP/5], float), np.array([0.25,4.0], float), .01)), | |
('Two classes (minority; 0.1% shift)', (np.array([TOTAL_POP/5* 4, TOTAL_POP/5], float), np.array([0.25,4.0], float), .001)), | |
]: | |
N,xs,s = args | |
mu_x = np.sum(N/np.sum(N)*xs) | |
std_x = np.sum( N/np.sum(N)*(xs-mu_x)**2) | |
Evol = simul(*args) | |
fig,ax = plt.subplots() | |
ax.plot(Evol[:,0,:].sum(1)/TOTAL_POP, label='S') | |
ax.plot(Evol[:,1,:].sum(1)/TOTAL_POP, label='E') | |
ax.plot(Evol[:,2,:].sum(1)/TOTAL_POP, label='I') | |
ax.plot(Evol[:,3,:].sum(1)/TOTAL_POP, label='R') | |
ax.legend(loc='best') | |
ax.set_xlim(0, 365) | |
ax.set_title(title + ' (CV={})'.format(std_x/mu_x)) | |
sns.despine(fig, trim=True) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment