I hereby claim:
-
I am luispedro on github.
-
I am luispedro (https://keybase.io/luispedro) on keybase.
-
I have a public key ASBto9ey42rmyXUsEJflex23RWhAlqOiCzmCroSke7XYigo
| %matplotlib qt | |
| from scipy.stats import pearsonr,spearmanr | |
| from scipy import stats | |
| from matplotlib import pyplot as plt | |
| import pandas as pd | |
| import numpy as np | |
| import seaborn as sns | |
| data = pd.read_excel('./062109-1.xlsx', sheet_name=2) | |
| data = data[data.columns[:12]] |
| import pandas as pd | |
| TARGET = 5_000_000 | |
| TARGET_RATE = TARGET / 366 | |
| data = [ | |
| ('January', 31, 271_347), | |
| ('February', 29, 321_084), | |
| ('March', 31, 424_562), | |
| ('April', 30, 412_478), | |
| ('May', 31, 442_295), |
| import re | |
| import cv2 | |
| import subprocess | |
| pat = re.compile(r'^WIFI:S:([^;]+);T:WPA;P:([^;]+);;') | |
| detect = cv2.QRCodeDetector() | |
| cv2.namedWindow("preview") | |
| vc = cv2.VideoCapture(0) | |
| rval, frame = vc.read() |
| import COVID19Py | |
| covid19 = COVID19Py.COVID19() | |
| locations = covid19.getLocations(timelines=True) | |
| UK = '2020-12-03T00:00:00Z' | |
| EU = set(['AT', 'BE', 'BG', 'HR', 'CY', 'CZ', 'DK', 'EE', 'FI', 'FR', 'DE', 'GR', 'HU', 'IE', 'IT', 'LV', 'LU', 'MT', 'NL', 'PL', 'RO', 'SK', 'SI', 'ES', 'SE']) | |
| tot = 0 | |
| for loc in locations: | |
| if loc['country_code'] in EU: | |
| tim = loc['timelines']['deaths']['timeline'] |
I hereby claim:
I am luispedro on github.
I am luispedro (https://keybase.io/luispedro) on keybase.
I have a public key ASBto9ey42rmyXUsEJflex23RWhAlqOiCzmCroSke7XYigo
| # %matplotlib qt | |
| import numpy as np | |
| import seaborn as sns | |
| from matplotlib import pyplot as plt | |
| from matplotlib import style | |
| style.use('default') | |
| TOTAL_POP = 100_000 | |
| MAX_ITERS = 100_000 | |
| rho = 0.5 |
| import pymc3 as pm | |
| from scipy import stats | |
| import numpy as np | |
| NR_TESTS = 3330 | |
| POSITIVES = 50 | |
| PRE_NEG = 401 | |
| PRE_NEG_POS = 2 | |
| PRE_PLUS = 37+75+85 |
| # for Emacs: -*- coding: utf-8 -*- | |
| # Originally found on the internet. Not my work | |
| include "%L" | |
| # def emit(keys, codepoint, word): | |
| # print ('<Multi_key> %s <period>\t: "%s"\tU%04X\t\t# CIRCLED DIGIT %s' % | |
| # (keys, unichr(codepoint), codepoint, word)).encode('utf8') |
| import numpy as np | |
| # FROM | |
| # http://worldpopulationreview.com/countries/china-population/ | |
| pyramid0china = np.array( | |
| [16446861., 16821572., 17097250., 17284418., 17390933., 17423080., | |
| 17403550., 17341743., 17247061., 17129365., 16998517., 16861620., | |
| 16727156., 16605907., 16498945., 16404588., 16387661., 16480191., |
| Tiny animal-like things living in and around | |
| people do many things. Some of these animal-like | |
| things are good for us, others are bad, and, for | |
| many, we do not know anything about them. We want | |
| to know more. | |
| How these small animal-like things look and act | |
| comes from what is written inside them, which we | |
| can only read if it is broken up in pieces. We use | |
| computers to try to put these pieces together and |