Created
January 8, 2020 02:22
-
-
Save lukas/04d7779e82bf08ba48c12018a3d037fa to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import wandb | |
import matplotlib.pyplot as plt | |
from sklearn import datasets | |
wandb.init() | |
iris = datasets.load_iris() | |
X = iris.data[:, :2] # we only take the first two features. | |
y = iris.target | |
x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5 | |
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5 | |
plt.figure(2, figsize=(8, 6)) | |
plt.clf() | |
# Plot the training points | |
plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Set1, | |
edgecolor='k') | |
plt.xlabel('Sepal length') | |
plt.ylabel('Sepal width') | |
plt.xlim(x_min, x_max) | |
plt.ylim(y_min, y_max) | |
plt.xticks(()) | |
plt.yticks(()) | |
wandb.log({"dataset":plt}) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment