Created
January 21, 2020 18:48
-
-
Save lukas/bf2ed4288c4f91deb57c2fad148fc416 to your computer and use it in GitHub Desktop.
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import numpy as np | |
import os | |
import wandb | |
from wandb.keras import WandbCallback | |
import tensorflow as tf | |
run = wandb.init() | |
config = run.config | |
config.dropout = 0.25 | |
config.dense_layer_nodes = 100 | |
config.learn_rate = 0.08 | |
config.batch_size = 128 | |
config.epochs = 10 | |
class_names = ['airplane', 'automobile', 'bird', 'cat', 'deer', | |
'dog', 'frog', 'horse', 'ship', 'truck'] | |
num_classes = len(class_names) | |
(X_train, y_train), (X_test, y_test) = cifar10.load_data() | |
# Convert class vectors to binary class matrices. | |
y_train = tf.keras.utils.to_categorical(y_train, num_classes) | |
y_test = tf.keras.utils.to_categorical(y_test, num_classes) | |
model = tf.keras.models.Sequential() | |
model.add(tf.keras.layers.Conv2D(32, (3, 3), padding='same', | |
input_shape=X_train.shape[1:], activation='relu')) | |
model.add(tf.keras.layers.MaxPooling2D(pool_size=(2, 2))) | |
model.add(tf.keras.layers.Dropout(config.dropout)) | |
model.add(tf.keras.layers.Flatten()) | |
model.add(tf.keras.layers.Dense(config.dense_layer_nodes, activation='relu')) | |
model.add(tf.keras.layers.Dropout(config.dropout)) | |
model.add(tf.keras.layers.Dense(num_classes, activation='softmax')) | |
model.compile(loss='categorical_crossentropy', | |
optimizer="adam", | |
metrics=['accuracy']) | |
# log the number of total parameters | |
config.total_params = model.count_params() | |
print("Total params: ", config.total_params) | |
X_train = X_train.astype('float32') / 255. | |
X_test = X_test.astype('float32') / 255. | |
datagen = ImageDataGenerator(width_shift_range=0.1, rotation_range=10, height_shift_range=0.1, shear_range=0.1) | |
datagen.fit(X_train) | |
# Fit the model on the batches generated by datagen.flow(). | |
model.fit_generator(datagen.flow(X_train, y_train, | |
batch_size=config.batch_size), | |
steps_per_epoch=X_train.shape[0] // config.batch_size, | |
epochs=config.epochs, | |
validation_data=(X_test, y_test), | |
callbacks=[WandbCallback(data_type="image", labels=class_names)]) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment