Created
February 10, 2021 07:38
-
-
Save lukasjapan/3e3c94f92b58349e032d745706b4f28f to your computer and use it in GitHub Desktop.
using-deeplearning4j-to-distinguish-between-cats-and-dogs.2.kt
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
// designing the model - mostly the same as shown at https://deeplearning4j.org/mnist-for-beginners | |
val conf = NeuralNetConfiguration.Builder() | |
.seed(ThreadLocalRandom.current().nextLong()) | |
.optimizationAlgo(OptimizationAlgorithm.STOCHASTIC_GRADIENT_DESCENT) | |
.iterations(1) | |
.learningRate(0.006) | |
.updater(Nesterovs(0.9)) | |
.regularization(true).l2(1e-4) | |
.list() | |
.layer(0, DenseLayer.Builder() | |
.nIn(1000) // Number of input datapoints. | |
.nOut(1000) // Number of output datapoints. | |
.activation(ActivationReLU()) // Activation function. | |
.weightInit(WeightInit.XAVIER) // Weight initialization. | |
.build() | |
) | |
.layer(1, OutputLayer.Builder(LossFunctions.LossFunction.NEGATIVELOGLIKELIHOOD) | |
.nIn(1000) | |
.nOut(2) | |
.activation(ActivationSoftmax()) | |
.weightInit(WeightInit.XAVIER) | |
.build() | |
) | |
.pretrain(false).backprop(true) | |
.build() | |
val model = MultiLayerNetwork(conf) | |
model.init() | |
// define the answeres | |
val cat = Nd4j.create(doubleArrayOf(1.0,0.0)) | |
val dog = Nd4j.create(doubleArrayOf(0.0,1.0)) | |
// catLabels and dogLabels hold the input labels from the training set in a list | |
val trainingData = catLabels.map { DataSet(it, cat) } + dogLabels.map { DataSet(it, dog) } | |
// don't show dogs and cats one after another | |
Collections.shuffle(trainingData) | |
// feed all data to the model | |
model.fit(ListDataSetIterator(trainingData)) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment