Skip to content

Instantly share code, notes, and snippets.

@lukegre
Created May 19, 2017 07:46
Show Gist options
  • Save lukegre/87720119f24d915eb7a513e189f8a4bb to your computer and use it in GitHub Desktop.
Save lukegre/87720119f24d915eb7a513e189f8a4bb to your computer and use it in GitHub Desktop.
Calculate total alkalinity according to Lee et al. (2006)
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
This script is written to calculate total alkalinity according to Lee et al. (2006).
Please see function help for more details.
Please acknowledge use.
"""
__author__ = "Luke Gregor"
__email__ = "[email protected]"
__date__ = "2017-05-19"
import numpy as np
def calc_TA_lee2006(lat, lon, salt, tempC, return_details=False):
"""
Calculates total alkalinity according to:
Lee, K., Tong, L. T., Millero, F. J., Sabine, C. L., Dickson, A. G.,
Goyet, C., … Key, R. M. (2006). Global relationships of total alkalinity
with salinity and temperature in surface waters of the world’s oceans.
Geophysical Research Letters, 33(19), L19605.
https://doi.org/10.1029/2006GL027207
Accepts a single location or a numpy array of locations with associated measurements.
lat = latitude
lon = longitude
salt = salinity
tempC = temperature in degrees C
return_details = True (default), False
if return_details is set to True a pandas.DataFrame will be returned
with original input and alkalinity, zone number and name, and standard deviation
Please acknowledge usage of this script.
"""
def is_eqPac(yA, xA):
# north south / east west boundaries
p0 = (abs(yA) < 20) & (xA > -140) & (xA < -75)
# southern diagonal boundary
x1, y1 = -140, -10
x2, y2 = -110, -20
# create two vectors and then calculate the cross product
v1 = np.array([x2 - x1, y2 - y1])
v2 = np.array([x2 - xA, y2 - yA])
# if p1 is negative it is in EQ Pac
p1 = (v1[0] * v2[1] - v1[1] * v2[0]) < 0
# northern diagonal boundary
x1, y1 = -140, 10
x2, y2 = -110, 20
# create two vectors and then calculate the cross product
v1 = np.array([x2 - x1, y2 - y1])
v2 = np.array([x2 - xA, y2 - yA])
# if p2 is positive it is in EQ Pac
p2 = (v1[0] * v2[1] - v1[1] * v2[0]) > 0
return (p0 * p1 * p2)
y = lat
x = lon
s = salt
t = tempC
zones = {
1: {
"name": "(Sub)tropics",
"condition": lambda y, x, s, t: (y <= 30.) & (y >= -30) & (t > 20.) & (s > 31.) & (s < 38.) & (~is_eqPac(y, x)),
"function": lambda y, x, s, t: (2305. + 58.66 * (s - 35.) + 2.32 * (s - 35.)**2 - 1.41 * (t - 20.) + 0.040 * (t - 20.)**2),
"std_reported": 8.6,
},
2: {
"name": "Pacific equatorial",
"condition": lambda y, x, s, t: is_eqPac(y, x) & (s > 31) & (s < 36.5) & (t > 18),
"function": lambda y, x, s, t: (2294. + 64.88 * (s - 35.) + 0.39 * (s - 35.)**2 - 4.52 * (t - 29.) + 0.232 * (t - 29)**2),
"std_reported": 7.5,
},
3: {
"name": "North Atlantic",
"condition": lambda y, x, s, t: (y > 30) & (x > -90) & (x < 75) & (t > 0) & (t < 20) & (s > 31) & (s < 37),
"function": lambda y, x, s, t: (2305. + 53.97 * (s - 35.) + 2.74 * (s - 35.)**2 - 1.16 * (t - 20.) + 0.040 * (t - 20)**2),
"std_reported": 6.4,
},
4: {
"name": "North Pacific",
"condition": lambda y, x, s, t: (y > 30) & (y < -80) & (x > 120) & (x < -105) & (t > 0) & (t < 20) & (s > 31) & (s < 35),
"function": lambda y, x, s, t: (2305. + 53.97 * (s - 35.) + 2.74 * (s - 35.)**2 - 1.16 * (t - 20.) + 0.040 * (t - 20)**2),
"std_reported": 8.7,
},
5: {
"name": "Southern Ocean",
"condition": lambda y, x, s, t: (y < -30.) & (y > -70) & (t < 20.0) & (s > 33.0) & (s < 36.),
"function": lambda y, x, s, t: (2305. + 52.48 * (s - 35.) + 2.85 * (s - 35.)**2 - 0.49 * (t - 20.) + 0.086 * (t - 20)**2),
"std_reported": 8.4,
}
}
alkalinity = (
(zones[1]["function"](y, x, s, t) * zones[1]["condition"](y, x, s, t)) +
(zones[2]["function"](y, x, s, t) * zones[2]["condition"](y, x, s, t)) +
(zones[3]["function"](y, x, s, t) * zones[3]["condition"](y, x, s, t)) +
(zones[4]["function"](y, x, s, t) * zones[4]["condition"](y, x, s, t)) +
(zones[5]["function"](y, x, s, t) * zones[5]["condition"](y, x, s, t))
)
if not return_details:
return alkalinity
iszone = (
(1 * zones[1]["condition"](y, x, s, t)) +
(2 * zones[2]["condition"](y, x, s, t)) +
(3 * zones[3]["condition"](y, x, s, t)) +
(4 * zones[4]["condition"](y, x, s, t)) +
(5 * zones[5]["condition"](y, x, s, t))
)
dct = {
"latitude": lat,
"longitude": lon,
"salinity": salt,
"temperatureC": tempC,
"alkalinity": alkalinity,
"zone_number": iszone,
"zone_name": [zones[z]["name"] for z in iszone],
"std_deviation": [zones[z]["std_reported"] for z in iszone],
}
try:
from pandas import DataFrame
return DataFrame.from_dict(dct)
except ImportError:
return dct
def test():
lat = np.array([0, 10, 19])
lon = np.array([-110, -130, -120])
sss = np.array([34.5, 34.5, 35.5])
sst = np.array([20., 28., 25])
print (calc_TA_lee2006(lat, lon, sss, sst, return_details=True))
if __name__ == '__main__':
test()
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment