Created
March 11, 2025 18:48
-
-
Save lukestanley/f939b9fac2ecd2504fa679f38facc7f6 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
2025-03-11 18:17:22.025 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717041924,"renderedWordCount":151,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n #","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:22.025 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 152 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:22.026 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 152 words and found 152 words. Total words in chunk: 216 | |
2025-03-11 18:17:22.026 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 152 words. Rendering 152 words. Buffer: 64 words | |
2025-03-11 18:17:22.027 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:22.073 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717042026,"renderedWordCount":152,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:22.074 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 152 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:22.074 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 152 words and found 152 words. Total words in chunk: 216 | |
2025-03-11 18:17:22.074 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 152 words. Rendering 152 words. Buffer: 64 words | |
2025-03-11 18:17:22.075 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:22.123 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717042026,"renderedWordCount":152,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:22.124 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 153 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:22.124 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 153 words and found 153 words. Total words in chunk: 216 | |
2025-03-11 18:17:22.124 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 153 words. Rendering 153 words. Buffer: 63 words | |
2025-03-11 18:17:22.125 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:22.173 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717042123,"renderedWordCount":153,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:22.174 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 153 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:22.174 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 153 words and found 153 words. Total words in chunk: 216 | |
2025-03-11 18:17:22.174 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 153 words. Rendering 153 words. Buffer: 63 words | |
2025-03-11 18:17:22.175 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:22.223 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717042123,"renderedWordCount":153,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:22.223 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 154 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:22.223 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 154 words and found 154 words. Total words in chunk: 216 | |
2025-03-11 18:17:22.223 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 154 words. Rendering 154 words. Buffer: 62 words | |
2025-03-11 18:17:22.224 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:22.273 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717042223,"renderedWordCount":154,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:22.274 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 154 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:22.274 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 154 words and found 154 words. Total words in chunk: 216 | |
2025-03-11 18:17:22.274 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 154 words. Rendering 154 words. Buffer: 62 words | |
2025-03-11 18:17:22.274 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:22.323 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717042223,"renderedWordCount":154,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:22.323 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 155 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:22.324 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 155 words and found 155 words. Total words in chunk: 216 | |
2025-03-11 18:17:22.324 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 155 words. Rendering 155 words. Buffer: 61 words | |
2025-03-11 18:17:22.324 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:22.373 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717042323,"renderedWordCount":155,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:22.374 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 155 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:22.374 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 155 words and found 155 words. Total words in chunk: 216 | |
2025-03-11 18:17:22.375 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 155 words. Rendering 155 words. Buffer: 61 words | |
2025-03-11 18:17:22.375 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:22.423 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717042323,"renderedWordCount":155,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:22.423 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 156 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:22.424 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 156 words and found 156 words. Total words in chunk: 216 | |
2025-03-11 18:17:22.424 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 156 words. Rendering 156 words. Buffer: 60 words | |
2025-03-11 18:17:22.424 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:22.473 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717042424,"renderedWordCount":156,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:22.474 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 156 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:22.474 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 156 words and found 156 words. Total words in chunk: 216 | |
2025-03-11 18:17:22.475 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 156 words. Rendering 156 words. Buffer: 60 words | |
2025-03-11 18:17:22.475 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:22.523 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717042424,"renderedWordCount":156,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:22.524 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 157 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:22.524 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 157 words and found 157 words. Total words in chunk: 216 | |
2025-03-11 18:17:22.525 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 157 words. Rendering 157 words. Buffer: 59 words | |
2025-03-11 18:17:22.525 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:22.573 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717042524,"renderedWordCount":157,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:22.574 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 157 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:22.574 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 157 words and found 157 words. Total words in chunk: 216 | |
2025-03-11 18:17:22.574 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 157 words. Rendering 157 words. Buffer: 59 words | |
2025-03-11 18:17:22.575 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:22.623 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717042524,"renderedWordCount":157,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:22.624 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 158 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:22.624 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 158 words and found 158 words. Total words in chunk: 216 | |
2025-03-11 18:17:22.624 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 158 words. Rendering 158 words. Buffer: 58 words | |
2025-03-11 18:17:22.624 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:22.673 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717042623,"renderedWordCount":158,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:22.673 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 158 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:22.674 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 158 words and found 158 words. Total words in chunk: 216 | |
2025-03-11 18:17:22.674 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 158 words. Rendering 158 words. Buffer: 58 words | |
2025-03-11 18:17:22.674 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:22.723 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717042623,"renderedWordCount":158,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:22.724 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 159 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:22.724 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 159 words and found 159 words. Total words in chunk: 216 | |
2025-03-11 18:17:22.725 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 159 words. Rendering 159 words. Buffer: 57 words | |
2025-03-11 18:17:22.725 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:22.773 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717042723,"renderedWordCount":159,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs =","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:22.774 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 159 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:22.774 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 159 words and found 159 words. Total words in chunk: 216 | |
2025-03-11 18:17:22.774 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 159 words. Rendering 159 words. Buffer: 57 words | |
2025-03-11 18:17:22.775 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:22.823 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717042723,"renderedWordCount":159,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs =","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:22.824 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 160 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:22.824 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 160 words and found 160 words. Total words in chunk: 216 | |
2025-03-11 18:17:22.824 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 160 words. Rendering 160 words. Buffer: 56 words | |
2025-03-11 18:17:22.825 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:22.873 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717042823,"renderedWordCount":160,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:22.874 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 160 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:22.874 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 160 words and found 160 words. Total words in chunk: 216 | |
2025-03-11 18:17:22.874 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 160 words. Rendering 160 words. Buffer: 56 words | |
2025-03-11 18:17:22.875 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:22.923 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717042823,"renderedWordCount":160,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:22.924 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 161 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:22.924 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 161 words and found 161 words. Total words in chunk: 216 | |
2025-03-11 18:17:22.924 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 161 words. Rendering 161 words. Buffer: 55 words | |
2025-03-11 18:17:22.925 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:22.973 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717042923,"renderedWordCount":161,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:22.973 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 161 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:22.973 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 161 words and found 161 words. Total words in chunk: 216 | |
2025-03-11 18:17:22.974 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 161 words. Rendering 161 words. Buffer: 55 words | |
2025-03-11 18:17:22.974 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:23.023 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717042923,"renderedWordCount":161,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:23.024 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 162 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:23.024 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 162 words and found 162 words. Total words in chunk: 216 | |
2025-03-11 18:17:23.024 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 162 words. Rendering 162 words. Buffer: 54 words | |
2025-03-11 18:17:23.025 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:23.073 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717043023,"renderedWordCount":162,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence',","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:23.074 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 162 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:23.074 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 162 words and found 162 words. Total words in chunk: 216 | |
2025-03-11 18:17:23.074 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 162 words. Rendering 162 words. Buffer: 54 words | |
2025-03-11 18:17:23.074 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:23.123 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717043023,"renderedWordCount":162,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence',","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:23.124 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 163 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:23.124 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 163 words and found 163 words. Total words in chunk: 216 | |
2025-03-11 18:17:23.124 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 163 words. Rendering 163 words. Buffer: 53 words | |
2025-03-11 18:17:23.125 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:23.173 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717043123,"renderedWordCount":163,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:23.174 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 163 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:23.174 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 163 words and found 163 words. Total words in chunk: 216 | |
2025-03-11 18:17:23.174 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 163 words. Rendering 163 words. Buffer: 53 words | |
2025-03-11 18:17:23.175 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:23.223 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717043123,"renderedWordCount":163,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:23.224 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 164 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:23.224 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 164 words and found 164 words. Total words in chunk: 216 | |
2025-03-11 18:17:23.224 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 164 words. Rendering 164 words. Buffer: 52 words | |
2025-03-11 18:17:23.225 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:23.273 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717043223,"renderedWordCount":164,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:23.274 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 164 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:23.274 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 164 words and found 164 words. Total words in chunk: 216 | |
2025-03-11 18:17:23.274 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 164 words. Rendering 164 words. Buffer: 52 words | |
2025-03-11 18:17:23.275 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:23.325 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717043223,"renderedWordCount":164,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:23.325 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 165 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:23.325 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 165 words and found 165 words. Total words in chunk: 216 | |
2025-03-11 18:17:23.325 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 165 words. Rendering 165 words. Buffer: 51 words | |
2025-03-11 18:17:23.326 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:23.373 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717043323,"renderedWordCount":165,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:23.374 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 165 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:23.374 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 165 words and found 165 words. Total words in chunk: 216 | |
2025-03-11 18:17:23.374 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 165 words. Rendering 165 words. Buffer: 51 words | |
2025-03-11 18:17:23.375 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:23.423 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717043323,"renderedWordCount":165,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:23.423 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 166 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:23.424 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 166 words and found 166 words. Total words in chunk: 216 | |
2025-03-11 18:17:23.424 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 166 words. Rendering 166 words. Buffer: 50 words | |
2025-03-11 18:17:23.424 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:23.473 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717043423,"renderedWordCount":166,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics',","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:23.474 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 166 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:23.474 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 166 words and found 166 words. Total words in chunk: 216 | |
2025-03-11 18:17:23.475 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 166 words. Rendering 166 words. Buffer: 50 words | |
2025-03-11 18:17:23.475 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:23.523 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717043423,"renderedWordCount":166,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics',","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:23.524 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 167 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:23.524 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 167 words and found 167 words. Total words in chunk: 216 | |
2025-03-11 18:17:23.524 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 167 words. Rendering 167 words. Buffer: 49 words | |
2025-03-11 18:17:23.525 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:23.573 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717043524,"renderedWordCount":167,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:23.573 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 167 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:23.574 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 167 words and found 167 words. Total words in chunk: 216 | |
2025-03-11 18:17:23.574 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 167 words. Rendering 167 words. Buffer: 49 words | |
2025-03-11 18:17:23.574 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:23.623 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717043524,"renderedWordCount":167,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:23.624 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 168 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:23.624 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 168 words and found 168 words. Total words in chunk: 216 | |
2025-03-11 18:17:23.625 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 168 words. Rendering 168 words. Buffer: 48 words | |
2025-03-11 18:17:23.625 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:23.673 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717043624,"renderedWordCount":168,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry',","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:23.674 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 168 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:23.674 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 168 words and found 168 words. Total words in chunk: 216 | |
2025-03-11 18:17:23.674 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 168 words. Rendering 168 words. Buffer: 48 words | |
2025-03-11 18:17:23.675 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:23.723 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717043624,"renderedWordCount":168,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry',","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:23.724 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 169 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:23.724 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 169 words and found 169 words. Total words in chunk: 216 | |
2025-03-11 18:17:23.724 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 169 words. Rendering 169 words. Buffer: 47 words | |
2025-03-11 18:17:23.725 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:23.773 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717043723,"renderedWordCount":169,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:23.774 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 169 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:23.774 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 169 words and found 169 words. Total words in chunk: 216 | |
2025-03-11 18:17:23.774 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 169 words. Rendering 169 words. Buffer: 47 words | |
2025-03-11 18:17:23.775 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:23.823 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717043723,"renderedWordCount":169,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:23.824 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 170 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:23.824 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 170 words and found 170 words. Total words in chunk: 216 | |
2025-03-11 18:17:23.824 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 170 words. Rendering 170 words. Buffer: 46 words | |
2025-03-11 18:17:23.825 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:23.873 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717043824,"renderedWordCount":170,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball',","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:23.874 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 170 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:23.874 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 170 words and found 170 words. Total words in chunk: 216 | |
2025-03-11 18:17:23.874 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 170 words. Rendering 170 words. Buffer: 46 words | |
2025-03-11 18:17:23.875 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:23.924 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717043824,"renderedWordCount":170,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball',","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:23.925 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 171 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:23.925 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 171 words and found 171 words. Total words in chunk: 216 | |
2025-03-11 18:17:23.925 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 171 words. Rendering 171 words. Buffer: 45 words | |
2025-03-11 18:17:23.926 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:23.973 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717043924,"renderedWordCount":171,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:23.974 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 171 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:23.974 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 171 words and found 171 words. Total words in chunk: 216 | |
2025-03-11 18:17:23.974 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 171 words. Rendering 171 words. Buffer: 45 words | |
2025-03-11 18:17:23.974 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:24.023 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717043924,"renderedWordCount":171,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:24.024 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 172 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:24.024 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 172 words and found 172 words. Total words in chunk: 216 | |
2025-03-11 18:17:24.024 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 172 words. Rendering 172 words. Buffer: 44 words | |
2025-03-11 18:17:24.024 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:24.073 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717044023,"renderedWordCount":172,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),\n ('biology',","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:24.073 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 172 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:24.074 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 172 words and found 172 words. Total words in chunk: 216 | |
2025-03-11 18:17:24.074 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 172 words. Rendering 172 words. Buffer: 44 words | |
2025-03-11 18:17:24.074 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:24.123 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717044023,"renderedWordCount":172,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),\n ('biology',","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:24.124 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 173 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:24.124 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 173 words and found 173 words. Total words in chunk: 216 | |
2025-03-11 18:17:24.124 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 173 words. Rendering 173 words. Buffer: 43 words | |
2025-03-11 18:17:24.124 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:24.173 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717044123,"renderedWordCount":173,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),\n ('biology', 'chemistry'),","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:24.174 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 173 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:24.175 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 173 words and found 173 words. Total words in chunk: 216 | |
2025-03-11 18:17:24.175 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 173 words. Rendering 173 words. Buffer: 43 words | |
2025-03-11 18:17:24.175 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:24.223 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717044123,"renderedWordCount":173,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),\n ('biology', 'chemistry'),","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:24.224 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 174 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:24.224 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 174 words and found 174 words. Total words in chunk: 216 | |
2025-03-11 18:17:24.225 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 174 words. Rendering 174 words. Buffer: 42 words | |
2025-03-11 18:17:24.225 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:24.273 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717044223,"renderedWordCount":174,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),\n ('biology', 'chemistry'),\n ('music',","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:24.273 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 174 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:24.273 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 174 words and found 174 words. Total words in chunk: 216 | |
2025-03-11 18:17:24.274 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 174 words. Rendering 174 words. Buffer: 42 words | |
2025-03-11 18:17:24.274 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:24.323 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717044223,"renderedWordCount":174,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),\n ('biology', 'chemistry'),\n ('music',","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:24.323 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 175 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:24.324 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 175 words and found 175 words. Total words in chunk: 216 | |
2025-03-11 18:17:24.324 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 175 words. Rendering 175 words. Buffer: 41 words | |
2025-03-11 18:17:24.324 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:24.375 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717044323,"renderedWordCount":175,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),\n ('biology', 'chemistry'),\n ('music', 'painting'),","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:24.376 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 175 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:24.376 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 175 words and found 175 words. Total words in chunk: 216 | |
2025-03-11 18:17:24.376 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 175 words. Rendering 175 words. Buffer: 41 words | |
2025-03-11 18:17:24.376 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:24.423 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717044323,"renderedWordCount":175,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),\n ('biology', 'chemistry'),\n ('music', 'painting'),","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:24.423 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 176 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:24.423 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 176 words and found 176 words. Total words in chunk: 216 | |
2025-03-11 18:17:24.423 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 176 words. Rendering 176 words. Buffer: 40 words | |
2025-03-11 18:17:24.424 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:24.473 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717044423,"renderedWordCount":176,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),\n ('biology', 'chemistry'),\n ('music', 'painting'),\n ('cooking',","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:24.473 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 176 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:24.474 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 176 words and found 176 words. Total words in chunk: 216 | |
2025-03-11 18:17:24.474 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 176 words. Rendering 176 words. Buffer: 40 words | |
2025-03-11 18:17:24.474 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:24.523 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717044423,"renderedWordCount":176,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),\n ('biology', 'chemistry'),\n ('music', 'painting'),\n ('cooking',","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:24.523 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 177 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:24.524 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 177 words and found 177 words. Total words in chunk: 216 | |
2025-03-11 18:17:24.524 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 177 words. Rendering 177 words. Buffer: 39 words | |
2025-03-11 18:17:24.524 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:24.573 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717044523,"renderedWordCount":177,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),\n ('biology', 'chemistry'),\n ('music', 'painting'),\n ('cooking', 'baking'),","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:24.574 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 177 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:24.574 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 177 words and found 177 words. Total words in chunk: 216 | |
2025-03-11 18:17:24.574 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 177 words. Rendering 177 words. Buffer: 39 words | |
2025-03-11 18:17:24.574 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:24.623 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717044523,"renderedWordCount":177,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),\n ('biology', 'chemistry'),\n ('music', 'painting'),\n ('cooking', 'baking'),","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:24.624 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 178 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:24.625 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 178 words and found 178 words. Total words in chunk: 216 | |
2025-03-11 18:17:24.625 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 178 words. Rendering 178 words. Buffer: 38 words | |
2025-03-11 18:17:24.625 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:24.673 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717044623,"renderedWordCount":178,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),\n ('biology', 'chemistry'),\n ('music', 'painting'),\n ('cooking', 'baking'),\n ('psychology',","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:24.674 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 178 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:24.674 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 178 words and found 178 words. Total words in chunk: 216 | |
2025-03-11 18:17:24.674 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 178 words. Rendering 178 words. Buffer: 38 words | |
2025-03-11 18:17:24.675 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:24.723 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717044623,"renderedWordCount":178,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),\n ('biology', 'chemistry'),\n ('music', 'painting'),\n ('cooking', 'baking'),\n ('psychology',","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:24.724 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 179 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:24.725 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 179 words and found 179 words. Total words in chunk: 216 | |
2025-03-11 18:17:24.725 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 179 words. Rendering 179 words. Buffer: 37 words | |
2025-03-11 18:17:24.725 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:24.773 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717044723,"renderedWordCount":179,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),\n ('biology', 'chemistry'),\n ('music', 'painting'),\n ('cooking', 'baking'),\n ('psychology', 'neuroscience')","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:24.774 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 179 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:24.774 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 179 words and found 179 words. Total words in chunk: 216 | |
2025-03-11 18:17:24.774 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 179 words. Rendering 179 words. Buffer: 37 words | |
2025-03-11 18:17:24.775 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:24.823 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717044723,"renderedWordCount":179,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),\n ('biology', 'chemistry'),\n ('music', 'painting'),\n ('cooking', 'baking'),\n ('psychology', 'neuroscience')","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:24.824 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 180 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:24.824 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 180 words and found 180 words. Total words in chunk: 216 | |
2025-03-11 18:17:24.825 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 180 words. Rendering 180 words. Buffer: 36 words | |
2025-03-11 18:17:24.826 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:24.873 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717044823,"renderedWordCount":180,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),\n ('biology', 'chemistry'),\n ('music', 'painting'),\n ('cooking', 'baking'),\n ('psychology', 'neuroscience')\n ]","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:24.874 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 180 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:24.874 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 180 words and found 180 words. Total words in chunk: 216 | |
2025-03-11 18:17:24.874 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 180 words. Rendering 180 words. Buffer: 36 words | |
2025-03-11 18:17:24.875 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:24.924 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717044823,"renderedWordCount":180,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),\n ('biology', 'chemistry'),\n ('music', 'painting'),\n ('cooking', 'baking'),\n ('psychology', 'neuroscience')\n ]","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:24.924 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 181 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:24.924 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 181 words and found 181 words. Total words in chunk: 216 | |
2025-03-11 18:17:24.925 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 181 words. Rendering 181 words. Buffer: 35 words | |
2025-03-11 18:17:24.925 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:24.973 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717044924,"renderedWordCount":181,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),\n ('biology', 'chemistry'),\n ('music', 'painting'),\n ('cooking', 'baking'),\n ('psychology', 'neuroscience')\n ]\n \n #","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:24.974 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 181 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:24.974 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 181 words and found 181 words. Total words in chunk: 216 | |
2025-03-11 18:17:24.974 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 181 words. Rendering 181 words. Buffer: 35 words | |
2025-03-11 18:17:24.975 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:25.023 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717044924,"renderedWordCount":181,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),\n ('biology', 'chemistry'),\n ('music', 'painting'),\n ('cooking', 'baking'),\n ('psychology', 'neuroscience')\n ]\n \n #","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:25.024 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 182 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:25.024 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 182 words and found 182 words. Total words in chunk: 216 | |
2025-03-11 18:17:25.024 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 182 words. Rendering 182 words. Buffer: 34 words | |
2025-03-11 18:17:25.025 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:25.073 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717045023,"renderedWordCount":182,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),\n ('biology', 'chemistry'),\n ('music', 'painting'),\n ('cooking', 'baking'),\n ('psychology', 'neuroscience')\n ]\n \n # Benchmark","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:25.074 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 182 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:25.074 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 182 words and found 182 words. Total words in chunk: 216 | |
2025-03-11 18:17:25.074 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 182 words. Rendering 182 words. Buffer: 34 words | |
2025-03-11 18:17:25.075 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:25.123 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717045023,"renderedWordCount":182,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),\n ('biology', 'chemistry'),\n ('music', 'painting'),\n ('cooking', 'baking'),\n ('psychology', 'neuroscience')\n ]\n \n # Benchmark","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:25.124 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 183 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:25.124 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 183 words and found 183 words. Total words in chunk: 216 | |
2025-03-11 18:17:25.124 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 183 words. Rendering 183 words. Buffer: 33 words | |
2025-03-11 18:17:25.125 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:25.173 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717045123,"renderedWordCount":183,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),\n ('biology', 'chemistry'),\n ('music', 'painting'),\n ('cooking', 'baking'),\n ('psychology', 'neuroscience')\n ]\n \n # Benchmark performance","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:25.173 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 183 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:25.174 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 183 words and found 183 words. Total words in chunk: 216 | |
2025-03-11 18:17:25.174 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 183 words. Rendering 183 words. Buffer: 33 words | |
2025-03-11 18:17:25.174 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:25.223 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717045123,"renderedWordCount":183,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),\n ('biology', 'chemistry'),\n ('music', 'painting'),\n ('cooking', 'baking'),\n ('psychology', 'neuroscience')\n ]\n \n # Benchmark performance","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:25.224 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 184 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:25.224 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 184 words and found 184 words. Total words in chunk: 216 | |
2025-03-11 18:17:25.224 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 184 words. Rendering 184 words. Buffer: 32 words | |
2025-03-11 18:17:25.225 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:25.273 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717045223,"renderedWordCount":184,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),\n ('biology', 'chemistry'),\n ('music', 'painting'),\n ('cooking', 'baking'),\n ('psychology', 'neuroscience')\n ]\n \n # Benchmark performance for","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:25.274 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 184 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:25.274 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 184 words and found 184 words. Total words in chunk: 216 | |
2025-03-11 18:17:25.274 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 184 words. Rendering 184 words. Buffer: 32 words | |
2025-03-11 18:17:25.274 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:25.323 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717045223,"renderedWordCount":184,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),\n ('biology', 'chemistry'),\n ('music', 'painting'),\n ('cooking', 'baking'),\n ('psychology', 'neuroscience')\n ]\n \n # Benchmark performance for","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:25.324 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 185 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:25.324 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 185 words and found 185 words. Total words in chunk: 216 | |
2025-03-11 18:17:25.325 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 185 words. Rendering 185 words. Buffer: 31 words | |
2025-03-11 18:17:25.325 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:25.373 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717045324,"renderedWordCount":185,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),\n ('biology', 'chemistry'),\n ('music', 'painting'),\n ('cooking', 'baking'),\n ('psychology', 'neuroscience')\n ]\n \n # Benchmark performance for different","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:25.373 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 185 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:25.374 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 185 words and found 185 words. Total words in chunk: 216 | |
2025-03-11 18:17:25.374 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 185 words. Rendering 185 words. Buffer: 31 words | |
2025-03-11 18:17:25.374 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:25.424 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717045324,"renderedWordCount":185,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),\n ('biology', 'chemistry'),\n ('music', 'painting'),\n ('cooking', 'baking'),\n ('psychology', 'neuroscience')\n ]\n \n # Benchmark performance for different","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:25.424 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 186 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:25.425 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 186 words and found 186 words. Total words in chunk: 216 | |
2025-03-11 18:17:25.425 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 186 words. Rendering 186 words. Buffer: 30 words | |
2025-03-11 18:17:25.425 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:25.473 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717045424,"renderedWordCount":186,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),\n ('biology', 'chemistry'),\n ('music', 'painting'),\n ('cooking', 'baking'),\n ('psychology', 'neuroscience')\n ]\n \n # Benchmark performance for different batch","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:25.474 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 186 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:25.474 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 186 words and found 186 words. Total words in chunk: 216 | |
2025-03-11 18:17:25.475 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 186 words. Rendering 186 words. Buffer: 30 words | |
2025-03-11 18:17:25.475 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:25.523 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717045424,"renderedWordCount":186,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),\n ('biology', 'chemistry'),\n ('music', 'painting'),\n ('cooking', 'baking'),\n ('psychology', 'neuroscience')\n ]\n \n # Benchmark performance for different batch","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:25.523 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 187 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:25.524 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 187 words and found 187 words. Total words in chunk: 216 | |
2025-03-11 18:17:25.524 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 187 words. Rendering 187 words. Buffer: 29 words | |
2025-03-11 18:17:25.524 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:25.573 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717045523,"renderedWordCount":187,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),\n ('biology', 'chemistry'),\n ('music', 'painting'),\n ('cooking', 'baking'),\n ('psychology', 'neuroscience')\n ]\n \n # Benchmark performance for different batch sizes","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:25.573 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 187 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:25.574 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 187 words and found 187 words. Total words in chunk: 216 | |
2025-03-11 18:17:25.574 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 187 words. Rendering 187 words. Buffer: 29 words | |
2025-03-11 18:17:25.574 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:25.623 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717045523,"renderedWordCount":187,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),\n ('biology', 'chemistry'),\n ('music', 'painting'),\n ('cooking', 'baking'),\n ('psychology', 'neuroscience')\n ]\n \n # Benchmark performance for different batch sizes","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:25.624 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 188 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:25.626 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 188 words and found 188 words. Total words in chunk: 216 | |
2025-03-11 18:17:25.627 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 188 words. Rendering 188 words. Buffer: 28 words | |
2025-03-11 18:17:25.627 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:25.673 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717045623,"renderedWordCount":188,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),\n ('biology', 'chemistry'),\n ('music', 'painting'),\n ('cooking', 'baking'),\n ('psychology', 'neuroscience')\n ]\n \n # Benchmark performance for different batch sizes\n batch_sizes","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:25.674 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 188 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:25.674 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 188 words and found 188 words. Total words in chunk: 216 | |
2025-03-11 18:17:25.675 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 188 words. Rendering 188 words. Buffer: 28 words | |
2025-03-11 18:17:25.675 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:25.723 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717045623,"renderedWordCount":188,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),\n ('biology', 'chemistry'),\n ('music', 'painting'),\n ('cooking', 'baking'),\n ('psychology', 'neuroscience')\n ]\n \n # Benchmark performance for different batch sizes\n batch_sizes","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:25.724 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 189 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:25.724 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 189 words and found 189 words. Total words in chunk: 216 | |
2025-03-11 18:17:25.724 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 189 words. Rendering 189 words. Buffer: 27 words | |
2025-03-11 18:17:25.724 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:25.773 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717045723,"renderedWordCount":189,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),\n ('biology', 'chemistry'),\n ('music', 'painting'),\n ('cooking', 'baking'),\n ('psychology', 'neuroscience')\n ]\n \n # Benchmark performance for different batch sizes\n batch_sizes =","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:25.774 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 189 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:25.774 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 189 words and found 189 words. Total words in chunk: 216 | |
2025-03-11 18:17:25.774 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 189 words. Rendering 189 words. Buffer: 27 words | |
2025-03-11 18:17:25.775 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:25.823 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717045723,"renderedWordCount":189,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),\n ('biology', 'chemistry'),\n ('music', 'painting'),\n ('cooking', 'baking'),\n ('psychology', 'neuroscience')\n ]\n \n # Benchmark performance for different batch sizes\n batch_sizes =","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:25.824 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 190 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:25.824 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 190 words and found 190 words. Total words in chunk: 216 | |
2025-03-11 18:17:25.824 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 190 words. Rendering 190 words. Buffer: 26 words | |
2025-03-11 18:17:25.825 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:25.873 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717045823,"renderedWordCount":190,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),\n ('biology', 'chemistry'),\n ('music', 'painting'),\n ('cooking', 'baking'),\n ('psychology', 'neuroscience')\n ]\n \n # Benchmark performance for different batch sizes\n batch_sizes = [1,","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:25.874 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 190 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:25.874 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 190 words and found 190 words. Total words in chunk: 216 | |
2025-03-11 18:17:25.874 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 190 words. Rendering 190 words. Buffer: 26 words | |
2025-03-11 18:17:25.875 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:25.923 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717045823,"renderedWordCount":190,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),\n ('biology', 'chemistry'),\n ('music', 'painting'),\n ('cooking', 'baking'),\n ('psychology', 'neuroscience')\n ]\n \n # Benchmark performance for different batch sizes\n batch_sizes = [1,","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:25.923 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 191 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:25.924 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 191 words and found 191 words. Total words in chunk: 216 | |
2025-03-11 18:17:25.924 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 191 words. Rendering 191 words. Buffer: 25 words | |
2025-03-11 18:17:25.924 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:25.973 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717045923,"renderedWordCount":191,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),\n ('biology', 'chemistry'),\n ('music', 'painting'),\n ('cooking', 'baking'),\n ('psychology', 'neuroscience')\n ]\n \n # Benchmark performance for different batch sizes\n batch_sizes = [1, 2,","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:25.974 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 191 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:25.974 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 191 words and found 191 words. Total words in chunk: 216 | |
2025-03-11 18:17:25.974 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 191 words. Rendering 191 words. Buffer: 25 words | |
2025-03-11 18:17:25.975 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:26.023 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717045923,"renderedWordCount":191,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),\n ('biology', 'chemistry'),\n ('music', 'painting'),\n ('cooking', 'baking'),\n ('psychology', 'neuroscience')\n ]\n \n # Benchmark performance for different batch sizes\n batch_sizes = [1, 2,","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:26.024 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 192 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:26.024 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 192 words and found 192 words. Total words in chunk: 216 | |
2025-03-11 18:17:26.024 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 192 words. Rendering 192 words. Buffer: 24 words | |
2025-03-11 18:17:26.025 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:26.073 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717046023,"renderedWordCount":192,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),\n ('biology', 'chemistry'),\n ('music', 'painting'),\n ('cooking', 'baking'),\n ('psychology', 'neuroscience')\n ]\n \n # Benchmark performance for different batch sizes\n batch_sizes = [1, 2, 4,","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:26.073 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 192 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:26.073 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 192 words and found 192 words. Total words in chunk: 216 | |
2025-03-11 18:17:26.074 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 192 words. Rendering 192 words. Buffer: 24 words | |
2025-03-11 18:17:26.074 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:26.123 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717046023,"renderedWordCount":192,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),\n ('biology', 'chemistry'),\n ('music', 'painting'),\n ('cooking', 'baking'),\n ('psychology', 'neuroscience')\n ]\n \n # Benchmark performance for different batch sizes\n batch_sizes = [1, 2, 4,","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:26.124 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 193 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:26.124 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 193 words and found 193 words. Total words in chunk: 216 | |
2025-03-11 18:17:26.124 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 193 words. Rendering 193 words. Buffer: 23 words | |
2025-03-11 18:17:26.125 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:26.173 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717046123,"renderedWordCount":193,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),\n ('biology', 'chemistry'),\n ('music', 'painting'),\n ('cooking', 'baking'),\n ('psychology', 'neuroscience')\n ]\n \n # Benchmark performance for different batch sizes\n batch_sizes = [1, 2, 4, 8]","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:26.173 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 193 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:26.174 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 193 words and found 193 words. Total words in chunk: 216 | |
2025-03-11 18:17:26.174 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 193 words. Rendering 193 words. Buffer: 23 words | |
2025-03-11 18:17:26.174 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:26.223 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717046123,"renderedWordCount":193,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),\n ('biology', 'chemistry'),\n ('music', 'painting'),\n ('cooking', 'baking'),\n ('psychology', 'neuroscience')\n ]\n \n # Benchmark performance for different batch sizes\n batch_sizes = [1, 2, 4, 8]","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:26.224 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 194 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:26.224 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 194 words and found 194 words. Total words in chunk: 216 | |
2025-03-11 18:17:26.224 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 194 words. Rendering 194 words. Buffer: 22 words | |
2025-03-11 18:17:26.224 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:26.273 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717046223,"renderedWordCount":194,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),\n ('biology', 'chemistry'),\n ('music', 'painting'),\n ('cooking', 'baking'),\n ('psychology', 'neuroscience')\n ]\n \n # Benchmark performance for different batch sizes\n batch_sizes = [1, 2, 4, 8] #","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:26.273 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 194 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:26.274 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 194 words and found 194 words. Total words in chunk: 216 | |
2025-03-11 18:17:26.274 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 194 words. Rendering 194 words. Buffer: 22 words | |
2025-03-11 18:17:26.274 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:26.327 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717046223,"renderedWordCount":194,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),\n ('biology', 'chemistry'),\n ('music', 'painting'),\n ('cooking', 'baking'),\n ('psychology', 'neuroscience')\n ]\n \n # Benchmark performance for different batch sizes\n batch_sizes = [1, 2, 4, 8] #","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:26.327 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 195 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:26.328 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 195 words and found 195 words. Total words in chunk: 216 | |
2025-03-11 18:17:26.328 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 195 words. Rendering 195 words. Buffer: 21 words | |
2025-03-11 18:17:26.328 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:26.373 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717046328,"renderedWordCount":195,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),\n ('biology', 'chemistry'),\n ('music', 'painting'),\n ('cooking', 'baking'),\n ('psychology', 'neuroscience')\n ]\n \n # Benchmark performance for different batch sizes\n batch_sizes = [1, 2, 4, 8] # Define","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:26.373 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 195 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:26.373 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 195 words and found 195 words. Total words in chunk: 216 | |
2025-03-11 18:17:26.374 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 195 words. Rendering 195 words. Buffer: 21 words | |
2025-03-11 18:17:26.374 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:26.423 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717046328,"renderedWordCount":195,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),\n ('biology', 'chemistry'),\n ('music', 'painting'),\n ('cooking', 'baking'),\n ('psychology', 'neuroscience')\n ]\n \n # Benchmark performance for different batch sizes\n batch_sizes = [1, 2, 4, 8] # Define","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:26.423 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 196 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:26.424 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 196 words and found 196 words. Total words in chunk: 216 | |
2025-03-11 18:17:26.425 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 196 words. Rendering 196 words. Buffer: 20 words | |
2025-03-11 18:17:26.425 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:26.473 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717046423,"renderedWordCount":196,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),\n ('biology', 'chemistry'),\n ('music', 'painting'),\n ('cooking', 'baking'),\n ('psychology', 'neuroscience')\n ]\n \n # Benchmark performance for different batch sizes\n batch_sizes = [1, 2, 4, 8] # Define different","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:26.474 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 196 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:26.474 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 196 words and found 196 words. Total words in chunk: 216 | |
2025-03-11 18:17:26.474 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 196 words. Rendering 196 words. Buffer: 20 words | |
2025-03-11 18:17:26.474 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:26.523 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717046423,"renderedWordCount":196,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),\n ('biology', 'chemistry'),\n ('music', 'painting'),\n ('cooking', 'baking'),\n ('psychology', 'neuroscience')\n ]\n \n # Benchmark performance for different batch sizes\n batch_sizes = [1, 2, 4, 8] # Define different","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:26.524 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 197 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:26.524 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 197 words and found 197 words. Total words in chunk: 216 | |
2025-03-11 18:17:26.524 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 197 words. Rendering 197 words. Buffer: 19 words | |
2025-03-11 18:17:26.524 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:26.573 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717046523,"renderedWordCount":197,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),\n ('biology', 'chemistry'),\n ('music', 'painting'),\n ('cooking', 'baking'),\n ('psychology', 'neuroscience')\n ]\n \n # Benchmark performance for different batch sizes\n batch_sizes = [1, 2, 4, 8] # Define different batch","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:26.574 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 197 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:26.574 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 197 words and found 197 words. Total words in chunk: 216 | |
2025-03-11 18:17:26.575 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 197 words. Rendering 197 words. Buffer: 19 words | |
2025-03-11 18:17:26.575 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:26.623 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717046523,"renderedWordCount":197,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),\n ('biology', 'chemistry'),\n ('music', 'painting'),\n ('cooking', 'baking'),\n ('psychology', 'neuroscience')\n ]\n \n # Benchmark performance for different batch sizes\n batch_sizes = [1, 2, 4, 8] # Define different batch","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:26.623 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 198 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:26.623 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 198 words and found 198 words. Total words in chunk: 216 | |
2025-03-11 18:17:26.623 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 198 words. Rendering 198 words. Buffer: 18 words | |
2025-03-11 18:17:26.624 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:26.673 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717046623,"renderedWordCount":198,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),\n ('biology', 'chemistry'),\n ('music', 'painting'),\n ('cooking', 'baking'),\n ('psychology', 'neuroscience')\n ]\n \n # Benchmark performance for different batch sizes\n batch_sizes = [1, 2, 4, 8] # Define different batch sizes","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:26.673 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 198 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:26.673 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 198 words and found 198 words. Total words in chunk: 216 | |
2025-03-11 18:17:26.673 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 198 words. Rendering 198 words. Buffer: 18 words | |
2025-03-11 18:17:26.674 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:26.723 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717046623,"renderedWordCount":198,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),\n ('biology', 'chemistry'),\n ('music', 'painting'),\n ('cooking', 'baking'),\n ('psychology', 'neuroscience')\n ]\n \n # Benchmark performance for different batch sizes\n batch_sizes = [1, 2, 4, 8] # Define different batch sizes","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:26.723 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 199 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:26.724 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 199 words and found 199 words. Total words in chunk: 216 | |
2025-03-11 18:17:26.724 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 199 words. Rendering 199 words. Buffer: 17 words | |
2025-03-11 18:17:26.724 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:26.773 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717046724,"renderedWordCount":199,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),\n ('biology', 'chemistry'),\n ('music', 'painting'),\n ('cooking', 'baking'),\n ('psychology', 'neuroscience')\n ]\n \n # Benchmark performance for different batch sizes\n batch_sizes = [1, 2, 4, 8] # Define different batch sizes to","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:26.774 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 199 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:26.774 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 199 words and found 199 words. Total words in chunk: 216 | |
2025-03-11 18:17:26.774 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 199 words. Rendering 199 words. Buffer: 17 words | |
2025-03-11 18:17:26.775 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:26.823 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717046724,"renderedWordCount":199,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),\n ('biology', 'chemistry'),\n ('music', 'painting'),\n ('cooking', 'baking'),\n ('psychology', 'neuroscience')\n ]\n \n # Benchmark performance for different batch sizes\n batch_sizes = [1, 2, 4, 8] # Define different batch sizes to","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:26.824 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 200 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:26.824 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 200 words and found 200 words. Total words in chunk: 216 | |
2025-03-11 18:17:26.824 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 200 words. Rendering 200 words. Buffer: 16 words | |
2025-03-11 18:17:26.825 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:26.873 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717046823,"renderedWordCount":200,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),\n ('biology', 'chemistry'),\n ('music', 'painting'),\n ('cooking', 'baking'),\n ('psychology', 'neuroscience')\n ]\n \n # Benchmark performance for different batch sizes\n batch_sizes = [1, 2, 4, 8] # Define different batch sizes to test","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:26.874 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 200 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:26.874 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 200 words and found 200 words. Total words in chunk: 216 | |
2025-03-11 18:17:26.874 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 200 words. Rendering 200 words. Buffer: 16 words | |
2025-03-11 18:17:26.875 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:26.925 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717046823,"renderedWordCount":200,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),\n ('biology', 'chemistry'),\n ('music', 'painting'),\n ('cooking', 'baking'),\n ('psychology', 'neuroscience')\n ]\n \n # Benchmark performance for different batch sizes\n batch_sizes = [1, 2, 4, 8] # Define different batch sizes to test","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:26.926 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 201 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:26.926 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 201 words and found 201 words. Total words in chunk: 216 | |
2025-03-11 18:17:26.926 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 201 words. Rendering 201 words. Buffer: 15 words | |
2025-03-11 18:17:26.926 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:26.973 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717046926,"renderedWordCount":201,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),\n ('biology', 'chemistry'),\n ('music', 'painting'),\n ('cooking', 'baking'),\n ('psychology', 'neuroscience')\n ]\n \n # Benchmark performance for different batch sizes\n batch_sizes = [1, 2, 4, 8] # Define different batch sizes to test\n results","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:26.974 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 201 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:26.974 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 201 words and found 201 words. Total words in chunk: 216 | |
2025-03-11 18:17:26.974 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 201 words. Rendering 201 words. Buffer: 15 words | |
2025-03-11 18:17:26.974 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:27.023 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717046926,"renderedWordCount":201,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),\n ('biology', 'chemistry'),\n ('music', 'painting'),\n ('cooking', 'baking'),\n ('psychology', 'neuroscience')\n ]\n \n # Benchmark performance for different batch sizes\n batch_sizes = [1, 2, 4, 8] # Define different batch sizes to test\n results","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:27.024 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 202 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:27.024 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 202 words and found 202 words. Total words in chunk: 216 | |
2025-03-11 18:17:27.024 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 202 words. Rendering 202 words. Buffer: 14 words | |
2025-03-11 18:17:27.025 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:27.073 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717047023,"renderedWordCount":202,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),\n ('biology', 'chemistry'),\n ('music', 'painting'),\n ('cooking', 'baking'),\n ('psychology', 'neuroscience')\n ]\n \n # Benchmark performance for different batch sizes\n batch_sizes = [1, 2, 4, 8] # Define different batch sizes to test\n results =","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:27.074 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 202 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:27.074 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 202 words and found 202 words. Total words in chunk: 216 | |
2025-03-11 18:17:27.074 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 202 words. Rendering 202 words. Buffer: 14 words | |
2025-03-11 18:17:27.074 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:27.123 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717047023,"renderedWordCount":202,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),\n ('biology', 'chemistry'),\n ('music', 'painting'),\n ('cooking', 'baking'),\n ('psychology', 'neuroscience')\n ]\n \n # Benchmark performance for different batch sizes\n batch_sizes = [1, 2, 4, 8] # Define different batch sizes to test\n results =","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:27.123 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 203 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:27.123 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 203 words and found 203 words. Total words in chunk: 216 | |
2025-03-11 18:17:27.124 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 203 words. Rendering 203 words. Buffer: 13 words | |
2025-03-11 18:17:27.124 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:27.176 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717047123,"renderedWordCount":203,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),\n ('biology', 'chemistry'),\n ('music', 'painting'),\n ('cooking', 'baking'),\n ('psychology', 'neuroscience')\n ]\n \n # Benchmark performance for different batch sizes\n batch_sizes = [1, 2, 4, 8] # Define different batch sizes to test\n results = benchmark_batch_sizes(topic_pairs,","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:27.176 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 203 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:27.176 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 203 words and found 203 words. Total words in chunk: 216 | |
2025-03-11 18:17:27.176 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 203 words. Rendering 203 words. Buffer: 13 words | |
2025-03-11 18:17:27.176 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:27.223 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717047123,"renderedWordCount":203,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),\n ('biology', 'chemistry'),\n ('music', 'painting'),\n ('cooking', 'baking'),\n ('psychology', 'neuroscience')\n ]\n \n # Benchmark performance for different batch sizes\n batch_sizes = [1, 2, 4, 8] # Define different batch sizes to test\n results = benchmark_batch_sizes(topic_pairs,","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:27.224 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 204 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:27.224 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 204 words and found 204 words. Total words in chunk: 216 | |
2025-03-11 18:17:27.224 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 204 words. Rendering 204 words. Buffer: 12 words | |
2025-03-11 18:17:27.225 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:27.273 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717047223,"renderedWordCount":204,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),\n ('biology', 'chemistry'),\n ('music', 'painting'),\n ('cooking', 'baking'),\n ('psychology', 'neuroscience')\n ]\n \n # Benchmark performance for different batch sizes\n batch_sizes = [1, 2, 4, 8] # Define different batch sizes to test\n results = benchmark_batch_sizes(topic_pairs, llm_choice,","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:27.274 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 204 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:27.274 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 204 words and found 204 words. Total words in chunk: 216 | |
2025-03-11 18:17:27.275 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 204 words. Rendering 204 words. Buffer: 12 words | |
2025-03-11 18:17:27.275 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:27.324 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717047223,"renderedWordCount":204,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),\n ('biology', 'chemistry'),\n ('music', 'painting'),\n ('cooking', 'baking'),\n ('psychology', 'neuroscience')\n ]\n \n # Benchmark performance for different batch sizes\n batch_sizes = [1, 2, 4, 8] # Define different batch sizes to test\n results = benchmark_batch_sizes(topic_pairs, llm_choice,","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:27.324 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 205 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:27.324 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 205 words and found 205 words. Total words in chunk: 216 | |
2025-03-11 18:17:27.324 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 205 words. Rendering 205 words. Buffer: 11 words | |
2025-03-11 18:17:27.325 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:27.373 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717047324,"renderedWordCount":205,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),\n ('biology', 'chemistry'),\n ('music', 'painting'),\n ('cooking', 'baking'),\n ('psychology', 'neuroscience')\n ]\n \n # Benchmark performance for different batch sizes\n batch_sizes = [1, 2, 4, 8] # Define different batch sizes to test\n results = benchmark_batch_sizes(topic_pairs, llm_choice, batch_sizes)","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:27.374 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 205 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:27.374 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 205 words and found 205 words. Total words in chunk: 216 | |
2025-03-11 18:17:27.374 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 205 words. Rendering 205 words. Buffer: 11 words | |
2025-03-11 18:17:27.375 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:27.423 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717047324,"renderedWordCount":205,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),\n ('biology', 'chemistry'),\n ('music', 'painting'),\n ('cooking', 'baking'),\n ('psychology', 'neuroscience')\n ]\n \n # Benchmark performance for different batch sizes\n batch_sizes = [1, 2, 4, 8] # Define different batch sizes to test\n results = benchmark_batch_sizes(topic_pairs, llm_choice, batch_sizes)","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:27.423 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 206 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:27.424 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 206 words and found 206 words. Total words in chunk: 216 | |
2025-03-11 18:17:27.424 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 206 words. Rendering 206 words. Buffer: 10 words | |
2025-03-11 18:17:27.424 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:27.473 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717047423,"renderedWordCount":206,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),\n ('biology', 'chemistry'),\n ('music', 'painting'),\n ('cooking', 'baking'),\n ('psychology', 'neuroscience')\n ]\n \n # Benchmark performance for different batch sizes\n batch_sizes = [1, 2, 4, 8] # Define different batch sizes to test\n results = benchmark_batch_sizes(topic_pairs, llm_choice, batch_sizes)\n \n #","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:27.474 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 206 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:27.474 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 206 words and found 206 words. Total words in chunk: 216 | |
2025-03-11 18:17:27.474 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 206 words. Rendering 206 words. Buffer: 10 words | |
2025-03-11 18:17:27.474 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:27.523 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717047423,"renderedWordCount":206,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),\n ('biology', 'chemistry'),\n ('music', 'painting'),\n ('cooking', 'baking'),\n ('psychology', 'neuroscience')\n ]\n \n # Benchmark performance for different batch sizes\n batch_sizes = [1, 2, 4, 8] # Define different batch sizes to test\n results = benchmark_batch_sizes(topic_pairs, llm_choice, batch_sizes)\n \n #","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:27.523 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 207 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:27.523 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 207 words and found 207 words. Total words in chunk: 216 | |
2025-03-11 18:17:27.524 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 207 words. Rendering 207 words. Buffer: 9 words | |
2025-03-11 18:17:27.524 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:27.558 [info] [GitHub Copilot Chat] srequest done: chatRequestId: [REDACTED], speculationRequestId: [REDACTED] | |
2025-03-11 18:17:27.559 [trace] [Window] ChatService#sendRequest: Provider returned progress: {"kind":"textEdit","uri":{"$mid":1,"fsPath":"/home/user/dev/testing/test.py","external":"file:///home/user/dev/testing/test.py","path":"/home/user/dev/testing/test.py","scheme":"file"},"edits":[{"text":"","range":{"startLineNumber":1,"startColumn":1,"endLineNumber":73,"endColumn":1}}]} | |
2025-03-11 18:17:27.560 [trace] [Window] ChatResponseViewModel#onDidChange: Update- no new words | |
2025-03-11 18:17:27.564 [trace] [Window] [History stack global-default]: notifyNavigation() (editor: file:///home/user/dev/testing/test.py, event: edit) | |
2025-03-11 18:17:27.564 [trace] [Window] [History stack global-default]: notifyNavigation() not ignoring (editor: file:///home/user/dev/testing/test.py, event: edit) | |
2025-03-11 18:17:27.564 [trace] [Window] [History stack global-default]: onSelectionAwareEditorNavigation() (editor: file:///home/user/dev/testing/test.py, event: edit) | |
2025-03-11 18:17:27.565 [trace] [Window] [History stack global-default]: add() (editor: file:///home/user/dev/testing/test.py, event: <none>) | |
2025-03-11 18:17:27.565 [trace] [Window] [History stack global-default]: index: 21, navigating: false | |
2025-03-11 18:17:27.565 [trace] [Window] [History stack edits-default]: notifyNavigation() (editor: file:///home/user/dev/testing/test.py, event: edit) | |
2025-03-11 18:17:27.565 [trace] [Window] [History stack edits-default]: notifyNavigation() not ignoring (editor: file:///home/user/dev/testing/test.py, event: edit) | |
2025-03-11 18:17:27.565 [trace] [Window] [History stack edits-default]: onSelectionAwareEditorNavigation() (editor: file:///home/user/dev/testing/test.py, event: edit) | |
2025-03-11 18:17:27.565 [trace] [Window] [History stack edits-default]: add() (editor: file:///home/user/dev/testing/test.py, event: <none>) | |
2025-03-11 18:17:27.565 [trace] [Window] [History stack edits-default]: index: 11, navigating: false | |
2025-03-11 18:17:27.566 [trace] [Window] [History stack global-default]: notifyNavigation() (editor: file:///home/user/dev/testing/test.py, event: user) | |
2025-03-11 18:17:27.566 [trace] [Window] [History stack global-default]: notifyNavigation() not ignoring (editor: file:///home/user/dev/testing/test.py, event: user) | |
2025-03-11 18:17:27.566 [trace] [Window] [History stack global-default]: onSelectionAwareEditorNavigation() (editor: file:///home/user/dev/testing/test.py, event: user) | |
2025-03-11 18:17:27.566 [trace] [Window] [History stack global-default]: replace() (editor: file:///home/user/dev/testing/test.py, event: <none>) | |
2025-03-11 18:17:27.566 [trace] [Window] [History stack global-default]: index: 21, navigating: false | |
2025-03-11 18:17:27.566 [trace] [Window] [text file model] onModelContentChanged() - enter file:///home/user/dev/testing/test.py | |
2025-03-11 18:17:27.567 [trace] [Window] [text file model] onModelContentChanged() - new versionId 21 file:///home/user/dev/testing/test.py | |
2025-03-11 18:17:27.567 [trace] [Window] [text file model] onModelContentChanged() - model content changed and marked as dirty file:///home/user/dev/testing/test.py | |
2025-03-11 18:17:27.567 [trace] [Window] [backup tracker] scheduling backup file:///home/user/dev/testing/test.py | |
2025-03-11 18:17:27.570 [trace] [Window] [backup tracker] clearing pending backup creation file:///home/user/dev/testing/test.py | |
2025-03-11 18:17:27.571 [trace] [Window] [backup tracker] scheduling backup file:///home/user/dev/testing/test.py | |
2025-03-11 18:17:27.571 [trace] [Extension Host] ExtHostCommands#executeCommand inlineChat.hideHint | |
2025-03-11 18:17:27.572 [trace] [Window] ChatListItemRenderer#disposeElement: Disposing element, index=1 | |
2025-03-11 18:17:27.572 [trace] [Window] ChatListDelegate#getHeight: response, height=133 | |
2025-03-11 18:17:27.572 [trace] [Window] ChatListItemRenderer#renderElement: response, index=1 | |
2025-03-11 18:17:27.572 [trace] [Window] ChatListItemRenderer#renderElement: start progressive render, index=1 | |
2025-03-11 18:17:27.573 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717047523,"renderedWordCount":207,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),\n ('biology', 'chemistry'),\n ('music', 'painting'),\n ('cooking', 'baking'),\n ('psychology', 'neuroscience')\n ]\n \n # Benchmark performance for different batch sizes\n batch_sizes = [1, 2, 4, 8] # Define different batch sizes to test\n results = benchmark_batch_sizes(topic_pairs, llm_choice, batch_sizes)\n \n # Plot","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:27.573 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 207 at 13.783421606789611 words/s, counting... | |
2025-03-11 18:17:27.573 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 207 words and found 207 words. Total words in chunk: 216 | |
2025-03-11 18:17:27.573 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 207 words. Rendering 207 words. Buffer: 9 words | |
2025-03-11 18:17:27.573 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:27.601 [trace] [Window] ChatService#sendRequest: Provider returned progress: {"kind":"textEdit","uri":{"$mid":1,"fsPath":"/home/user/dev/testing/test.py","external":"file:///home/user/dev/testing/test.py","path":"/home/user/dev/testing/test.py","scheme":"file"},"edits":[],"done":true} | |
2025-03-11 18:17:27.601 [trace] [Window] ChatResponseViewModel#onDidChange: Update- no new words | |
2025-03-11 18:17:27.602 [trace] [Window] ChatResponseViewModel#onDidChange: Update- no new words | |
2025-03-11 18:17:27.603 [trace] [Window] ChatService#sendRequest: Provider returned response for session 817a69f6-73b9-417e-b618-7dfcda8614eb | |
2025-03-11 18:17:27.603 [trace] [Window] ChatResponseViewModel#onDidChange: Update- no new words | |
2025-03-11 18:17:27.605 [trace] [Window] ChatResponseViewModel#onDidChange: Update- no new words | |
2025-03-11 18:17:27.616 [trace] [Window] CommandService#executeCommand inlineChat.hideHint | |
2025-03-11 18:17:27.616 [trace] [Extension Host] [ms-python.python] INVOKE provider 'n=>n.provideInlayHints(E.revive(r),i,s)' | |
2025-03-11 18:17:27.617 [debug] [Window] [EditorAction2] NOT running command because its precondition is FALSE inlineChat.hideHint inlineChatShowingHint | |
2025-03-11 18:17:27.618 [trace] [Window] ChatListItemRenderer#disposeElement: Disposing element, index=1 | |
2025-03-11 18:17:27.618 [trace] [Window] ChatListItemRenderer#disposeElement: Disposing element, index=0 | |
2025-03-11 18:17:27.618 [trace] [Window] ChatListDelegate#getHeight: request, height=112 | |
2025-03-11 18:17:27.618 [trace] [Window] ChatListDelegate#getHeight: response, height=133 | |
2025-03-11 18:17:27.618 [trace] [Extension Host] [InlayHints] NO inlay hints from 'ms-python.python' for range {"startLineNumber":1,"startColumn":1,"endLineNumber":1,"endColumn":1} | |
2025-03-11 18:17:27.618 [trace] [Extension Host] [ms-python.python] provider DONE after 2ms | |
2025-03-11 18:17:27.619 [trace] [Window] ChatListItemRenderer#renderElement: response, index=1 | |
2025-03-11 18:17:27.619 [trace] [Window] ChatListItemRenderer#renderElement: start progressive render, index=1 | |
2025-03-11 18:17:27.619 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717047523,"renderedWordCount":207,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),\n ('biology', 'chemistry'),\n ('music', 'painting'),\n ('cooking', 'baking'),\n ('psychology', 'neuroscience')\n ]\n \n # Benchmark performance for different batch sizes\n batch_sizes = [1, 2, 4, 8] # Define different batch sizes to test\n results = benchmark_batch_sizes(topic_pairs, llm_choice, batch_sizes)\n \n # Plot","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:27.620 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 214 at 80 words/s, counting... | |
2025-03-11 18:17:27.620 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 214 words and found 214 words. Total words in chunk: 216 | |
2025-03-11 18:17:27.620 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 214 words. Rendering 214 words. Buffer: 2 words | |
2025-03-11 18:17:27.620 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: not rendering any new content this tick, but more available | |
2025-03-11 18:17:27.620 [trace] [Window] ChatListItemRenderer#renderElement: request, index=0 | |
2025-03-11 18:17:27.647 [trace] [Window] [DEBOUNCE: InlayHint] for file:///home/user/dev/testing/test.py is 25ms | |
2025-03-11 18:17:27.689 [trace] [Extension Host] ExtHostCommands#executeCommand setContext | |
2025-03-11 18:17:27.689 [trace] [Extension Host] ExtHostCommands#executeCommand _setContext | |
2025-03-11 18:17:27.692 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717047619,"renderedWordCount":214,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),\n ('biology', 'chemistry'),\n ('music', 'painting'),\n ('cooking', 'baking'),\n ('psychology', 'neuroscience')\n ]\n \n # Benchmark performance for different batch sizes\n batch_sizes = [1, 2, 4, 8] # Define different batch sizes to test\n results = benchmark_batch_sizes(topic_pairs, llm_choice, batch_sizes)\n \n # Plot the results\n plot_results(results)\n\nif __name__ == \"__main__\":","supportThemeIcons":false,"supportHtml":false}}]} | |
2025-03-11 18:17:27.695 [trace] [Extension Host] ExtHostCommands#executeCommand setContext | |
2025-03-11 18:17:27.695 [trace] [Extension Host] ExtHostCommands#executeCommand _setContext | |
2025-03-11 18:17:27.696 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 219 at 80 words/s, counting... | |
2025-03-11 18:17:27.696 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 219 words and found 216 words. Total words in chunk: 216 | |
2025-03-11 18:17:27.696 [trace] [Extension Host] ExtHostCommands#executeCommand setContext | |
2025-03-11 18:17:27.696 [trace] [Extension Host] ExtHostCommands#executeCommand _setContext | |
2025-03-11 18:17:27.697 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 219 words. Rendering 216 words. Buffer: 0 words | |
2025-03-11 18:17:27.697 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: doing progressive render, 2 parts to render | |
2025-03-11 18:17:27.698 [trace] [Extension Host] ExtHostCommands#executeCommand setContext | |
2025-03-11 18:17:27.698 [trace] [Extension Host] ExtHostCommands#executeCommand _setContext | |
2025-03-11 18:17:27.698 [trace] [Extension Host] ExtHostCommands#executeCommand setContext | |
2025-03-11 18:17:27.698 [trace] [Extension Host] ExtHostCommands#executeCommand _setContext | |
2025-03-11 18:17:27.707 [trace] [Extension Host] [ms-python.python] INVOKE provider 'n=>n.provideInlayHints(E.revive(r),i,s)' | |
2025-03-11 18:17:27.709 [trace] [Window] CommandService#executeCommand _setContext | |
2025-03-11 18:17:27.709 [trace] [Window] CommandService#executeCommand _setContext | |
2025-03-11 18:17:27.709 [trace] [Extension Host] [InlayHints] NO inlay hints from 'ms-python.python' for range {"startLineNumber":1,"startColumn":1,"endLineNumber":1,"endColumn":1} | |
2025-03-11 18:17:27.709 [trace] [Extension Host] [ms-python.python] provider DONE after 2ms | |
2025-03-11 18:17:27.710 [trace] [Window] CommandService#executeCommand _setContext | |
2025-03-11 18:17:27.712 [trace] [Window] CommandService#executeCommand _setContext | |
2025-03-11 18:17:27.712 [trace] [Window] CommandService#executeCommand _setContext | |
2025-03-11 18:17:27.718 [trace] [Window] [DEBOUNCE: InlayHint] for file:///home/user/dev/testing/test.py is 25ms | |
2025-03-11 18:17:27.732 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: START progressive render, index=1, renderData={"lastRenderTime":1741717047692,"renderedWordCount":216,"renderedParts":[{"kind":"markdownContent","content":{"value":"### [test.py](file:///home/user/dev/testing/test.py)\n\nAdd functionality to compare throughput for different batch sizes and generate graphs.\n\n````python\n<vscode_codeblock_uri>file:///home/user/dev/testing/test.py</vscode_codeblock_uri>import time\nimport warnings\nimport os\nfrom typing import List\nimport matplotlib.pyplot as plt # Add matplotlib for graphing\n\nwarnings.filterwarnings(\"ignore\")\nos.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'\n\nfrom outlines import models, generate, samplers\n\n# ...existing code...\n\ndef benchmark_batch_sizes(topic_pairs: List[tuple], llm_choice, batch_sizes: List[int]):\n \"\"\"Benchmark performance for different batch sizes.\"\"\"\n results = {}\n for batch_size in batch_sizes:\n print(f\"\\nBenchmarking batch size: {batch_size}\")\n start_time = time.time()\n for i in range(0, len(topic_pairs), batch_size):\n batch = topic_pairs[i:i + batch_size]\n batch_score_topics(batch, llm_choice)\n total_time = time.time() - start_time\n throughput = len(topic_pairs) / total_time\n results[batch_size] = throughput\n print(f\"Batch size: {batch_size}, Throughput: {throughput:.2f} pairs/second\")\n return results\n\ndef plot_results(results):\n \"\"\"Plot the benchmarking results.\"\"\"\n batch_sizes = list(results.keys())\n throughputs = list(results.values())\n plt.figure(figsize=(10, 6))\n plt.plot(batch_sizes, throughputs, marker='o')\n plt.xlabel('Batch Size')\n plt.ylabel('Throughput (pairs/second)')\n plt.title('Throughput vs Batch Size')\n plt.grid(True)\n plt.show()\n\ndef main():\n # Load the model with generate.choice configured\n llm_choice = load_model()\n \n # List of topic pairs to score\n topic_pairs = [\n ('artificial intelligence', 'machine learning'),\n ('quantum physics', 'astronomy'),\n ('poetry', 'literature'),\n ('basketball', 'soccer'),\n ('biology', 'chemistry'),\n ('music', 'painting'),\n ('cooking', 'baking'),\n ('psychology', 'neuroscience')\n ]\n \n # Benchmark performance for different batch sizes\n batch_sizes = [1, 2, 4, 8] # Define different batch sizes to test\n results = benchmark_batch_sizes(topic_pairs, llm_choice, batch_sizes)\n \n # Plot the results\n plot_results(results)\n\nif __name__ == \"__main__\":\n main()\n````","supportThemeIcons":false,"supportHtml":false}},{"kind":"textEditGroup","uri":{"$mid":1,"fsPath":"/home/user/dev/testing/test.py","external":"file:///home/user/dev/testing/test.py","path":"/home/user/dev/testing/test.py","scheme":"file"},"edits":[[],[{"text":"","range":{"startLineNumber":1,"startColumn":1,"endLineNumber":73,"endColumn":1}}],[]],"done":true}]} | |
2025-03-11 18:17:27.732 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 219 at 80 words/s, counting... | |
2025-03-11 18:17:27.732 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Chunk 0: Want to render 219 words and found 216 words. Total words in chunk: 216 | |
2025-03-11 18:17:27.733 [trace] [Window] ChatListItemRenderer#getNextProgressiveRenderContent: Want to render 219 words. Rendering 216 words. Buffer: 0 words | |
2025-03-11 18:17:27.733 [trace] [Window] ChatListItemRenderer#doNextProgressiveRender: END progressive render, index=1 and clearing renderData, response is complete | |
2025-03-11 18:17:27.765 [trace] [Extension Host] [ms-python.python] INVOKE provider 'n=>n.provideFoldingRanges(E.revive(r),i,s)' | |
2025-03-11 18:17:27.768 [trace] [Extension Host] [ms-python.python] provider DONE after 3ms | |
2025-03-11 18:17:27.769 [trace] [Window] [DEBOUNCE: Folding] for file:///home/user/dev/testing/test.py is 200ms | |
2025-03-11 18:17:27.815 [trace] [Extension Host] [vscode.merge-conflict] INVOKE provider 's=>s.provideCodeLenses(E.revive(r),i)' | |
2025-03-11 18:17:27.817 [trace] [Extension Host] ExtHostCommands#executeCommand setContext | |
2025-03-11 18:17:27.817 [trace] [Extension Host] ExtHostCommands#executeCommand _setContext | |
2025-03-11 18:17:27.817 [trace] [Extension Host] [vscode.merge-conflict] provider DONE after 2ms | |
2025-03-11 18:17:27.818 [trace] [Window] CommandService#executeCommand _setContext | |
2025-03-11 18:17:27.818 [trace] [Window] [DEBOUNCE: CodeLensProvide] for file:///home/user/dev/testing/test.py is 250ms | |
2025-03-11 18:17:27.829 [trace] [Extension Host] [DiagnosticCollection] change many (extension, owner, uris) ms-python.python python [[{"$mid":1,"external":"file:///home/user/dev/testing/test.py","path":"/home/user/dev/testing/test.py","scheme":"file"},[]]] | |
2025-03-11 18:17:27.867 [trace] [Extension Host] [ms-python.python] INVOKE provider 'n=>n.provideDocumentSemanticTokens(E.revive(r),i,s)' | |
2025-03-11 18:17:27.879 [trace] [Extension Host] ExtHostCommands#executeCommand setContext | |
2025-03-11 18:17:27.880 [trace] [Extension Host] ExtHostCommands#executeCommand _setContext | |
2025-03-11 18:17:27.881 [trace] [Window] CommandService#executeCommand _setContext | |
2025-03-11 18:17:27.912 [trace] [Extension Host] [ms-python.python] INVOKE provider 's=>s.provideDocumentSymbols(E.revive(r),i)' | |
2025-03-11 18:17:27.915 [trace] [Extension Host] [ms-python.python] INVOKE provider 's=>s.provideDocumentSymbols(E.revive(r),i)' | |
2025-03-11 18:17:28.298 [trace] [Extension Host] [DiagnosticCollection] change many (extension, owner, uris) ms-python.python python [[{"$mid":1,"external":"vscode-chat-code-block://817a69f6-73b9-417e-b618-7dfcda8614eb/response_11ddebd7-7ea8-4882-9d2d-09a47469e5c3/0#%7B%22references%22%3A%5B%5D%7D","path":"/response_11ddebd7-7ea8-4882-9d2d-09a47469e5c3/0","scheme":"vscode-chat-code-block","authority":"817a69f6-73b9-417e-b618-7dfcda8614eb","fragment":"{\"references\":[]}"},[{"startLineNumber":22,"startColumn":13,"endLineNumber":22,"endColumn":31,"message":"\"batch_score_topics\" is not defined","source":"Pylance","code":{"value":"reportUndefinedVariable","target":{"$mid":1,"path":"/microsoft/pyright/blob/main/docs/configuration.md","scheme":"https","authority":"github.com","fragment":"reportUndefinedVariable"}},"severity":4,"modelVersionId":3},{"startLineNumber":43,"startColumn":18,"endLineNumber":43,"endColumn":28,"message":"\"load_model\" is not defined","source":"Pylance","code":{"value":"reportUndefinedVariable","target":{"$mid":1,"path":"/microsoft/pyright/blob/main/docs/configuration.md","scheme":"https","authority":"github.com","fragment":"reportUndefinedVariable"}},"severity":4,"modelVersionId":3},{"startLineNumber":10,"startColumn":22,"endLineNumber":10,"endColumn":28,"message":"\"models\" is not accessed","source":"Pylance","severity":1,"tags":[1],"modelVersionId":3},{"startLineNumber":10,"startColumn":30,"endLineNumber":10,"endColumn":38,"message":"\"generate\" is not accessed","source":"Pylance","severity":1,"tags":[1],"modelVersionId":3},{"startLineNumber":10,"startColumn":40,"endLineNumber":10,"endColumn":48,"message":"\"samplers\" is not accessed","source":"Pylance","severity":1,"tags":[1],"modelVersionId":3}]]] | |
2025-03-11 18:17:28.300 [trace] [Extension Host] [ms-python.python] provider DONE after 388ms | |
2025-03-11 18:17:28.300 [trace] [Extension Host] [ms-python.python] provider DONE after 385ms | |
2025-03-11 18:17:28.301 [trace] [Extension Host] [ms-python.python] INVOKE provider 'n=>n.provideFoldingRanges(E.revive(r),i,s)' | |
2025-03-11 18:17:28.301 [trace] [Window] [DEBOUNCE: DocumentSymbols] for file:///home/user/dev/testing/test.py is 350ms | |
2025-03-11 18:17:28.301 [trace] [Extension Host] [ms-python.python] provider DONE after 434ms | |
2025-03-11 18:17:28.302 [trace] [Extension Host] [ms-python.python] provider DONE after 1ms | |
2025-03-11 18:17:28.302 [trace] [Extension Host] [ms-python.python] INVOKE provider 'i=>i.releaseDocumentSemanticColoring(r)' | |
2025-03-11 18:17:28.302 [trace] [Window] [DEBOUNCE: DocumentSemanticTokens] for file:///home/user/dev/testing/test.py is 300ms | |
2025-03-11 18:17:28.302 [trace] [Extension Host] [ms-python.python] provider DONE after 0ms | |
2025-03-11 18:17:28.348 [trace] [Extension Host] ExtHostCommands#executeCommand setContext | |
2025-03-11 18:17:28.349 [trace] [Extension Host] ExtHostCommands#executeCommand _setContext | |
2025-03-11 18:17:28.350 [trace] [Window] CommandService#executeCommand _setContext | |
2025-03-11 18:17:28.366 [trace] [Extension Host] [ms-python.python] INVOKE provider 'n=>n.provideInlayHints(E.revive(r),i,s)' | |
2025-03-11 18:17:28.367 [trace] [Extension Host] [InlayHints] NO inlay hints from 'ms-python.python' for range {"startLineNumber":1,"startColumn":1,"endLineNumber":1,"endColumn":1} | |
2025-03-11 18:17:28.367 [trace] [Extension Host] [ms-python.python] provider DONE after 1ms | |
2025-03-11 18:17:28.368 [trace] [Window] [DEBOUNCE: InlayHint] for file:///home/user/dev/testing/test.py is 25ms | |
2025-03-11 18:17:28.565 [trace] [Window] [DEBOUNCE: Document Colors] for file:///home/user/dev/testing/test.py is 1000ms | |
2025-03-11 18:17:28.565 [trace] [Extension Host] [vscode.git] INVOKE provider 's=>s.provideLinks(E.revive(r),i)' | |
2025-03-11 18:17:28.565 [trace] [Extension Host] [vscode.git] provider DONE after 0ms | |
2025-03-11 18:17:28.566 [trace] [Window] [DEBOUNCE: Links] for file:///home/user/dev/testing/test.py is 1000ms | |
2025-03-11 18:17:28.571 [trace] [Window] [backup tracker] creating backup file:///home/user/dev/testing/test.py | |
2025-03-11 18:17:28.571 [trace] [Window] [backup tracker] storing backup file:///home/user/dev/testing/test.py | |
2025-03-11 18:17:30.945 [trace] [Extension Host] [ms-python.python] INVOKE provider 'n=>n.provideInlayHints(E.revive(r),i,s)' | |
2025-03-11 18:17:30.947 [trace] [Extension Host] [InlayHints] NO inlay hints from 'ms-python.python' for range {"startLineNumber":1,"startColumn":1,"endLineNumber":1,"endColumn":1} | |
2025-03-11 18:17:30.947 [trace] [Extension Host] [ms-python.python] provider DONE after 2ms | |
2025-03-11 18:17:30.948 [trace] [Window] [DEBOUNCE: InlayHint] for file:///home/user/dev/testing/test.py is 25ms | |
2025-03-11 18:17:31.281 [trace] [Extension Host] [ms-python.python] INVOKE provider 'n=>n.provideInlayHints(E.revive(r),i,s)' | |
2025-03-11 18:17:31.282 [trace] [Extension Host] [InlayHints] NO inlay hints from 'ms-python.python' for range {"startLineNumber":1,"startColumn":1,"endLineNumber":1,"endColumn":1} | |
2025-03-11 18:17:31.282 [trace] [Extension Host] [ms-python.python] provider DONE after 1ms | |
2025-03-11 18:17:31.283 [trace] [Window] [DEBOUNCE: InlayHint] for file:///home/user/dev/testing/test.py is 25ms | |
2025-03-11 18:17:31.779 [trace] [Extension Host] [ms-python.python] INVOKE provider 'n=>n.provideInlayHints(E.revive(r),i,s)' | |
2025-03-11 18:17:31.781 [trace] [Extension Host] [InlayHints] NO inlay hints from 'ms-python.python' for range {"startLineNumber":1,"startColumn":1,"endLineNumber":1,"endColumn":1} | |
2025-03-11 18:17:31.781 [trace] [Extension Host] [ms-python.python] provider DONE after 2ms | |
2025-03-11 18:17:31.782 [trace] [Window] [DEBOUNCE: InlayHint] for file:///home/user/dev/testing/test.py is 25ms |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment