Forked from alumae/convert_espnet_full_whisper_to_hf.py
Created
December 3, 2023 01:14
-
-
Save lumpidu/5325008bdd17a5fc537fcfa1e23a08d5 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import argparse | |
import hashlib | |
import os | |
import urllib | |
import warnings | |
from collections import OrderedDict | |
import torch | |
from torch import nn | |
from tqdm import tqdm | |
from transformers import WhisperConfig, WhisperForConditionalGeneration, WhisperProcessor, WhisperTokenizer | |
def remove_ignore_keys_(state_dict): | |
ignore_keys = ["layers", "blocks"] | |
for k in ignore_keys: | |
state_dict.pop(k, None) | |
WHISPER_MAPPING = OrderedDict([ | |
("decoder.decoders", "decoder"), | |
("encoder.encoders", "encoder"), | |
("blocks", "layers"), | |
("mlp.0", "fc1"), | |
("mlp.2", "fc2"), | |
("mlp_ln", "final_layer_norm"), | |
(".attn.query", ".self_attn.q_proj"), | |
(".attn.key", ".self_attn.k_proj"), | |
(".attn.value", ".self_attn.v_proj"), | |
(".attn_ln", ".self_attn_layer_norm"), | |
(".attn.out", ".self_attn.out_proj"), | |
(".cross_attn.query", ".encoder_attn.q_proj"), | |
(".cross_attn.key", ".encoder_attn.k_proj"), | |
(".cross_attn.value", ".encoder_attn.v_proj"), | |
(".cross_attn_ln", ".encoder_attn_layer_norm"), | |
(".cross_attn.out", ".encoder_attn.out_proj"), | |
("decoder.ln.", "decoder.layer_norm."), | |
("encoder.ln.", "encoder.layer_norm."), | |
("token_embedding", "embed_tokens"), | |
("encoder.positional_embedding", "encoder.embed_positions.weight"), | |
("decoder.positional_embedding", "decoder.embed_positions.weight"), | |
("ln_post", "layer_norm"), | |
]) | |
def rename_keys(s_dict): | |
keys = list(s_dict.keys()) | |
for key in keys: | |
new_key = key | |
for k, v in WHISPER_MAPPING.items(): | |
if k in new_key: | |
new_key = new_key.replace(k, v) | |
print(f"{key} -> {new_key}") | |
s_dict[new_key] = s_dict.pop(key) | |
return s_dict | |
def make_linear_from_emb(emb): | |
vocab_size, emb_size = emb.weight.shape | |
lin_layer = nn.Linear(vocab_size, emb_size, bias=False) | |
lin_layer.weight.data = emb.weight.data | |
return lin_layer | |
def convert_espnet_whisper_to_tfms(espnet_checkpoint, pytorch_dump_folder_path, whisper_config_id): | |
state_dict = torch.load(espnet_checkpoint, map_location="cpu") | |
proj_out_weights = state_dict["decoder.decoders.token_embedding.weight"] | |
remove_ignore_keys_(state_dict) | |
rename_keys(state_dict) | |
tie_embeds = True | |
#ffn_dim = state_dict["decoder.layers.0.fc1.weight"].shape[0] | |
config = WhisperConfig.from_pretrained(whisper_config_id) | |
model = WhisperForConditionalGeneration(config) | |
missing, unexpected = model.model.load_state_dict(state_dict, strict=False) | |
if len(missing) > 0 and not set(missing) <= { | |
"encoder.embed_positions.weights", | |
"decoder.embed_positions.weights", | |
}: | |
raise ValueError( | |
"Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing," | |
f" but all the following weights are missing {missing}" | |
) | |
if tie_embeds: | |
model.proj_out = make_linear_from_emb(model.model.decoder.embed_tokens) | |
else: | |
model.proj_out.weight.data = proj_out_weights | |
model.save_pretrained(pytorch_dump_folder_path) | |
tokenizer = WhisperTokenizer.from_pretrained(whisper_config_id) | |
tokenizer.save_pretrained(pytorch_dump_folder_path) | |
processor = WhisperProcessor.from_pretrained(whisper_config_id) | |
processor.save_pretrained(pytorch_dump_folder_path) | |
if __name__ == "__main__": | |
parser = argparse.ArgumentParser() | |
# # Required parameters | |
parser.add_argument("--whisper-config-id", required=True, type=str, help="Whisper config ID, e.g. openai/whisper-medium") | |
parser.add_argument("--espnet_checkpoint", required=True, type=str, help="Patht to the Espnet model checkpoint") | |
parser.add_argument("--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model in HuggingFace format") | |
args = parser.parse_args() | |
convert_espnet_whisper_to_tfms(args.espnet_checkpoint, args.pytorch_dump_folder_path, args.whisper_config_id) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment