Last active
          June 21, 2017 09:33 
        
      - 
      
- 
        Save lyashevska/b4e9629e37c1963f5fe7a89fa611e350 to your computer and use it in GitHub Desktop. 
    join 2 dataframes using year and month parts of date time index
  
        
  
    
      This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
      Learn more about bidirectional Unicode characters
    
  
  
    
  | import pandas as pd | |
| d = {'dat': ['2016-01-01', '2016-01-02', '2016-01-03', '2017-01-01', '2017-01-02', '2017-01-03'],'x': [1, 2, 3, 4, 5, 6]} | |
| df1 = pd.DataFrame(d) | |
| df1.set_index(['dat'], inplace=True) | |
| df1.index = pd.to_datetime(df1.index) | |
| d = {'dat': ['2016-01-01', '2017-01-01'],'y': [10, 11]} | |
| df2 = pd.DataFrame(d) | |
| df2.set_index(['dat'], inplace=True) | |
| df2.index = pd.to_datetime(df2.index) | |
| # create a dictionary mapping from df2 | |
| # that translates the year/month period object to the corresponding value in column y | |
| m = dict(zip(df2.index.to_period('M'), df2.y)) | |
| # use map to map the period-ized dates in df1.index to the correct y values | |
| df1.assign(y=df1.index.to_period('M').map(m.get)) | 
  
    Sign up for free
    to join this conversation on GitHub.
    Already have an account?
    Sign in to comment