Created
March 27, 2013 23:06
-
-
Save lychees/5258965 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/** Micro Mezz o Macro Flation -- Overheated Economy ., Last Update: Mar. 3th 2013 **/ //{ | |
/** Header .. **/ //{ | |
#define LOCAL | |
#include <functional> | |
#include <algorithm> | |
#include <iostream> | |
#include <fstream> | |
#include <sstream> | |
#include <iomanip> | |
#include <numeric> | |
#include <cstring> | |
#include <climits> | |
#include <cassert> | |
#include <complex> | |
#include <cstdio> | |
#include <string> | |
#include <vector> | |
#include <bitset> | |
#include <queue> | |
#include <stack> | |
#include <cmath> | |
#include <ctime> | |
#include <list> | |
#include <set> | |
#include <map> | |
//#include <tr1/unordered_set> | |
//#include <tr1/unordered_map> | |
//#include <array> | |
using namespace std; | |
#define REP(i, n) for (int i=0;i<int(n);++i) | |
#define FOR(i, a, b) for (int i=int(a);i<int(b);++i) | |
#define DWN(i, b, a) for (int i=int(b-1);i>=int(a);--i) | |
#define REP_1(i, n) for (int i=1;i<=int(n);++i) | |
#define FOR_1(i, a, b) for (int i=int(a);i<=int(b);++i) | |
#define DWN_1(i, b, a) for (int i=int(b);i>=int(a);--i) | |
#define REP_C(i, n) for (int n____=int(n),i=0;i<n____;++i) | |
#define FOR_C(i, a, b) for (int b____=int(b),i=a;i<b____;++i) | |
#define DWN_C(i, b, a) for (int a____=int(a),i=b-1;i>=a____;--i) | |
#define REP_N(i, n) for (i=0;i<int(n);++i) | |
#define FOR_N(i, a, b) for (i=int(a);i<int(b);++i) | |
#define DWN_N(i, b, a) for (i=int(b-1);i>=int(a);--i) | |
#define REP_1_C(i, n) for (int n____=int(n),i=1;i<=n____;++i) | |
#define FOR_1_C(i, a, b) for (int b____=int(b),i=a;i<=b____;++i) | |
#define DWN_1_C(i, b, a) for (int a____=int(a),i=b;i>=a____;--i) | |
#define REP_1_N(i, n) for (i=1;i<=int(n);++i) | |
#define FOR_1_N(i, a, b) for (i=int(a);i<=int(b);++i) | |
#define DWN_1_N(i, b, a) for (i=int(b);i>=int(a);--i) | |
#define REP_C_N(i, n) for (int n____=(i=0,int(n));i<n____;++i) | |
#define FOR_C_N(i, a, b) for (int b____=(i=0,int(b);i<b____;++i) | |
#define DWN_C_N(i, b, a) for (int a____=(i=b-1,int(a));i>=a____;--i) | |
#define REP_1_C_N(i, n) for (int n____=(i=1,int(n));i<=n____;++i) | |
#define FOR_1_C_N(i, a, b) for (int b____=(i=1,int(b);i<=b____;++i) | |
#define DWN_1_C_N(i, b, a) for (int a____=(i=b,int(a));i>=a____;--i) | |
#define ECH(it, A) for (__typeof(A.begin()) it=A.begin(); it != A.end(); ++it) | |
#define REP_S(i, str) for (char*i=str;*i;++i) | |
#define REP_L(i, hd, nxt) for (int i=hd;i;i=nxt[i]) | |
#define REP_G(i, u) REP_L(i,hd[u],suc) | |
#define DO(n) for ( int ____n ## __line__ = n; ____n ## __line__ -- ; ) | |
#define REP_2(i, j, n, m) REP(i, n) REP(j, m) | |
#define REP_2_1(i, j, n, m) REP_1(i, n) REP_1(j, m) | |
#define REP_3(i, j, k, n, m, l) REP(i, n) REP(j, m) REP(k, l) | |
#define REP_3_1(i, j, k, n, m, l) REP_1(i, n) REP_1(j, m) REP_1(k, l) | |
#define REP_4(i, j, k, ii, n, m, l, nn) REP(i, n) REP(j, m) REP(k, l) REP(ii, nn) | |
#define REP_4_1(i, j, k, ii, n, m, l, nn) REP_1(i, n) REP_1(j, m) REP_1(k, l) REP_1(ii, nn) | |
#define ALL(A) A.begin(), A.end() | |
#define LLA(A) A.rbegin(), A.rend() | |
#define CPY(A, B) memcpy(A, B, sizeof(A)) | |
#define INS(A, P, B) A.insert(A.begin() + P, B) | |
#define ERS(A, P) A.erase(A.begin() + P) | |
#define BSC(A, x) (lower_bound(ALL(A), x) - A.begin()) | |
#define CTN(T, x) (T.find(x) != T.end()) | |
#define SZ(A) int((A).size()) | |
#define PB push_back | |
#define MP(A, B) make_pair(A, B) | |
#define PTT pair<T, T> | |
#define fi first | |
#define se second | |
#define re real() | |
#define im imag() | |
#define Rush for(int ____T=RD(); ____T--;) | |
#define Display(A, n, m) { \ | |
REP(i, n){ \ | |
REP(j, m) cout << A[i][j] << " "; \ | |
cout << endl; \ | |
} \ | |
} | |
#define Display_1(A, n, m) { \ | |
REP_1(i, n){ \ | |
REP_1(j, m) cout << A[i][j] << " "; \ | |
cout << endl; \ | |
} \ | |
} | |
#pragma comment(linker, "/STACK:36777216") | |
//#pragma GCC optimize ("O2") | |
string __file__(){ | |
string res = __FILE__; | |
int r = SZ(res) - 1; while (res[r] != '.') --r; | |
int l = r - 1; while (res[l] != '\\') --l; ++l; | |
return res.substr(l, r-l); | |
} | |
void Exec(string a, string b, string c){ | |
if (b.empty()) b = __file__(); | |
string cmd = a + ' ' + b + '.' + c; | |
system(cmd.c_str()); | |
} | |
void Ruby(string file = ""){Exec("ruby", file, "rb");} | |
void Python(string file = ""){Exec("python", file, "py");} | |
void Haskell(string file = ""){Exec("runghc", file, "hs");} | |
void Pascal(string file = ""){Exec("pascal", file, "pas");} | |
typedef long long LL; | |
//typedef long double DB; | |
typedef double DB; | |
typedef unsigned UINT; | |
typedef unsigned long long ULL; | |
typedef vector<int> VI; | |
typedef vector<char> VC; | |
typedef vector<string> VS; | |
typedef vector<LL> VL; | |
typedef vector<DB> VF; | |
typedef set<int> SI; | |
typedef set<string> SS; | |
typedef map<int, int> MII; | |
typedef map<string, int> MSI; | |
typedef pair<int, int> PII; | |
typedef pair<LL, LL> PLL; | |
typedef vector<PII> VII; | |
typedef vector<VI> VVI; | |
typedef vector<VII> VVII; | |
template<class T> inline T& RD(T &); | |
template<class T> inline void OT(const T &); | |
//inline int RD(){int x; return RD(x);} | |
inline LL RD(){LL x; return RD(x);} | |
inline DB& RF(DB &); | |
inline DB RF(){DB x; return RF(x);} | |
inline char* RS(char *s); | |
inline char& RC(char &c); | |
inline char RC(); | |
inline char& RC(char &c){scanf(" %c", &c); return c;} | |
inline char RC(){char c; return RC(c);} | |
//inline char& RC(char &c){c = getchar(); return c;} | |
//inline char RC(){return getchar();} | |
template<class T> inline T& RDD(T &x){ | |
char c; for (c = getchar(); c < '-'; c = getchar()); | |
if (c == '-'){x = '0' - getchar(); for (c = getchar(); '0' <= c && c <= '9'; c = getchar()) x = x * 10 + '0' - c;} | |
else {x = c - '0'; for (c = getchar(); '0' <= c && c <= '9'; c = getchar()) x = x * 10 + c - '0';} | |
return x; | |
} | |
inline LL RDD(){LL x; return RDD(x);} | |
template<class T0, class T1> inline T0& RD(T0 &x0, T1 &x1){RD(x0), RD(x1); return x0;} | |
template<class T0, class T1, class T2> inline T0& RD(T0 &x0, T1 &x1, T2 &x2){RD(x0), RD(x1), RD(x2); return x0;} | |
template<class T0, class T1, class T2, class T3> inline T0& RD(T0 &x0, T1 &x1, T2 &x2, T3 &x3){RD(x0), RD(x1), RD(x2), RD(x3); return x0;} | |
template<class T0, class T1, class T2, class T3, class T4> inline T0& RD(T0 &x0, T1 &x1, T2 &x2, T3 &x3, T4 &x4){RD(x0), RD(x1), RD(x2), RD(x3), RD(x4); return x0;} | |
template<class T0, class T1, class T2, class T3, class T4, class T5> inline T0& RD(T0 &x0, T1 &x1, T2 &x2, T3 &x3, T4 &x4, T5 &x5){RD(x0), RD(x1), RD(x2), RD(x3), RD(x4), RD(x5); return x0;} | |
template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline T0& RD(T0 &x0, T1 &x1, T2 &x2, T3 &x3, T4 &x4, T5 &x5, T6 &x6){RD(x0), RD(x1), RD(x2), RD(x3), RD(x4), RD(x5), RD(x6); return x0;} | |
template<class T0, class T1> inline void OT(const T0 &x0, const T1 &x1){OT(x0), OT(x1);} | |
template<class T0, class T1, class T2> inline void OT(const T0 &x0, const T1 &x1, const T2 &x2){OT(x0), OT(x1), OT(x2);} | |
template<class T0, class T1, class T2, class T3> inline void OT(const T0 &x0, const T1 &x1, const T2 &x2, const T3 &x3){OT(x0), OT(x1), OT(x2), OT(x3);} | |
template<class T0, class T1, class T2, class T3, class T4> inline void OT(const T0 &x0, const T1 &x1, const T2 &x2, const T3 &x3, const T4 &x4){OT(x0), OT(x1), OT(x2), OT(x3), OT(x4);} | |
template<class T0, class T1, class T2, class T3, class T4, class T5> inline void OT(const T0 &x0, const T1 &x1, const T2 &x2, const T3 &x3, const T4 &x4, const T5 &x5){OT(x0), OT(x1), OT(x2), OT(x3), OT(x4), OT(x5);} | |
template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline void OT(const T0 &x0, const T1 &x1, const T2 &x2, const T3 &x3, const T4 &x4, const T5 &x5, const T6 &x6){OT(x0), OT(x1), OT(x2), OT(x3), OT(x4), OT(x5), OT(x6);} | |
inline char& RC(char &a, char &b){RC(a), RC(b); return a;} | |
inline char& RC(char &a, char &b, char &c){RC(a), RC(b), RC(c); return a;} | |
inline char& RC(char &a, char &b, char &c, char &d){RC(a), RC(b), RC(c), RC(d); return a;} | |
inline char& RC(char &a, char &b, char &c, char &d, char &e){RC(a), RC(b), RC(c), RC(d), RC(e); return a;} | |
inline char& RC(char &a, char &b, char &c, char &d, char &e, char &f){RC(a), RC(b), RC(c), RC(d), RC(e), RC(f); return a;} | |
inline char& RC(char &a, char &b, char &c, char &d, char &e, char &f, char &g){RC(a), RC(b), RC(c), RC(d), RC(e), RC(f), RC(g); return a;} | |
inline DB& RF(DB &a, DB &b){RF(a), RF(b); return a;} | |
inline DB& RF(DB &a, DB &b, DB &c){RF(a), RF(b), RF(c); return a;} | |
inline DB& RF(DB &a, DB &b, DB &c, DB &d){RF(a), RF(b), RF(c), RF(d); return a;} | |
inline DB& RF(DB &a, DB &b, DB &c, DB &d, DB &e){RF(a), RF(b), RF(c), RF(d), RF(e); return a;} | |
inline DB& RF(DB &a, DB &b, DB &c, DB &d, DB &e, DB &f){RF(a), RF(b), RF(c), RF(d), RF(e), RF(f); return a;} | |
inline DB& RF(DB &a, DB &b, DB &c, DB &d, DB &e, DB &f, DB &g){RF(a), RF(b), RF(c), RF(d), RF(e), RF(f), RF(g); return a;} | |
inline void RS(char *s1, char *s2){RS(s1), RS(s2);} | |
inline void RS(char *s1, char *s2, char *s3){RS(s1), RS(s2), RS(s3);} | |
template<class T0,class T1>inline void RDD(const T0&a, const T1&b){RDD(a),RDD(b);} | |
template<class T0,class T1,class T2>inline void RDD(const T0&a, const T1&b, const T2&c){RDD(a),RDD(b),RDD(c);} | |
template<class T> inline void RST(T &A){memset(A, 0, sizeof(A));} | |
template<class T> inline void FLC(T &A, int x){memset(A, x, sizeof(A));} | |
template<class T> inline void CLR(T &A){A.clear();} | |
template<class T0, class T1> inline void RST(T0 &A0, T1 &A1){RST(A0), RST(A1);} | |
template<class T0, class T1, class T2> inline void RST(T0 &A0, T1 &A1, T2 &A2){RST(A0), RST(A1), RST(A2);} | |
template<class T0, class T1, class T2, class T3> inline void RST(T0 &A0, T1 &A1, T2 &A2, T3 &A3){RST(A0), RST(A1), RST(A2), RST(A3);} | |
template<class T0, class T1, class T2, class T3, class T4> inline void RST(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4){RST(A0), RST(A1), RST(A2), RST(A3), RST(A4);} | |
template<class T0, class T1, class T2, class T3, class T4, class T5> inline void RST(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5){RST(A0), RST(A1), RST(A2), RST(A3), RST(A4), RST(A5);} | |
template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline void RST(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5, T6 &A6){RST(A0), RST(A1), RST(A2), RST(A3), RST(A4), RST(A5), RST(A6);} | |
template<class T0, class T1> inline void FLC(T0 &A0, T1 &A1, int x){FLC(A0, x), FLC(A1, x);} | |
template<class T0, class T1, class T2> inline void FLC(T0 &A0, T1 &A1, T2 &A2, int x){FLC(A0, x), FLC(A1, x), FLC(A2, x);} | |
template<class T0, class T1, class T2, class T3> inline void FLC(T0 &A0, T1 &A1, T2 &A2, T3 &A3, int x){FLC(A0, x), FLC(A1, x), FLC(A2, x), FLC(A3, x);} | |
template<class T0, class T1, class T2, class T3, class T4> inline void FLC(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, int x){FLC(A0, x), FLC(A1, x), FLC(A2, x), FLC(A3, x), FLC(A4, x);} | |
template<class T0, class T1, class T2, class T3, class T4, class T5> inline void FLC(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5, int x){FLC(A0, x), FLC(A1, x), FLC(A2, x), FLC(A3, x), FLC(A4, x), FLC(A5, x);} | |
template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline void FLC(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5, T6 &A6, int x){FLC(A0, x), FLC(A1, x), FLC(A2, x), FLC(A3, x), FLC(A4, x), FLC(A5, x), FLC(A6, x);} | |
template<class T> inline void CLR(priority_queue<T, vector<T>, less<T> > &Q){while (!Q.empty()) Q.pop();} | |
template<class T> inline void CLR(priority_queue<T, vector<T>, greater<T> > &Q){while (!Q.empty()) Q.pop();} | |
template<class T0, class T1> inline void CLR(T0 &A0, T1 &A1){CLR(A0), CLR(A1);} | |
template<class T0, class T1, class T2> inline void CLR(T0 &A0, T1 &A1, T2 &A2){CLR(A0), CLR(A1), CLR(A2);} | |
template<class T0, class T1, class T2, class T3> inline void CLR(T0 &A0, T1 &A1, T2 &A2, T3 &A3){CLR(A0), CLR(A1), CLR(A2), CLR(A3);} | |
template<class T0, class T1, class T2, class T3, class T4> inline void CLR(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4){CLR(A0), CLR(A1), CLR(A2), CLR(A3), CLR(A4);} | |
template<class T0, class T1, class T2, class T3, class T4, class T5> inline void CLR(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5){CLR(A0), CLR(A1), CLR(A2), CLR(A3), CLR(A4), CLR(A5);} | |
template<class T0, class T1, class T2, class T3, class T4, class T5, class T6> inline void CLR(T0 &A0, T1 &A1, T2 &A2, T3 &A3, T4 &A4, T5 &A5, T6 &A6){CLR(A0), CLR(A1), CLR(A2), CLR(A3), CLR(A4), CLR(A5), CLR(A6);} | |
template<class T> inline void CLR(T &A, int n){REP(i, n) CLR(A[i]);} | |
template<class T> inline bool EPT(T &a){return a.empty();} | |
template<class T> inline T& SRT(T &A){sort(ALL(A)); return A;} | |
template<class T> inline T& RVS(T &A){reverse(ALL(A)); return A;} | |
template<class T> inline T& UNQ(T &A){A.resize(unique(ALL(SRT(A)))-A.begin());return A;} | |
template<class T, class C> inline T& SRT(T &A, C B){sort(ALL(A), B); return A;} | |
//} | |
/** Constant List .. **/ //{ | |
const int MOD = int(1e9) + 7; | |
//int MOD = 99990001; | |
const int INF = 0x3f3f3f3f; | |
const LL INFF = 1LL << 60; | |
const DB EPS = 1e-9; | |
const DB OO = 1e20; | |
const DB PI = acos(-1.0); //M_PI; | |
const int dx[] = {-1, 0, 1, 0}; | |
const int dy[] = {0, 1, 0, -1}; | |
//} | |
/** Add On .. **/ //{ | |
// <<= '0. Nichi Joo ., //{ | |
template<class T> inline void checkMin(T &a,const T b){if (b<a) a=b;} | |
template<class T> inline void checkMax(T &a,const T b){if (a<b) a=b;} | |
template<class T> inline void checkMin(T &a, T &b, const T x){checkMin(a, x), checkMin(b, x);} | |
template<class T> inline void checkMax(T &a, T &b, const T x){checkMax(a, x), checkMax(b, x);} | |
template <class T, class C> inline void checkMin(T& a, const T b, C c){if (c(b,a)) a = b;} | |
template <class T, class C> inline void checkMax(T& a, const T b, C c){if (c(a,b)) a = b;} | |
template<class T> inline T min(T a, T b, T c){return min(min(a, b), c);} | |
template<class T> inline T max(T a, T b, T c){return max(max(a, b), c);} | |
template<class T> inline T min(T a, T b, T c, T d){return min(min(a, b), min(c, d));} | |
template<class T> inline T max(T a, T b, T c, T d){return max(max(a, b), max(c, d));} | |
template<class T> inline T sqr(T a){return a*a;} | |
template<class T> inline T cub(T a){return a*a*a;} | |
inline int ceil(int x, int y){return (x - 1) / y + 1;} | |
inline int sgn(DB x){return x < -EPS ? -1 : x > EPS;} | |
inline int sgn(DB x, DB y){return sgn(x - y);} | |
inline DB cot(DB x){return (DB)1/tan(x);}; | |
inline DB sec(DB x){return (DB)1/cos(x);}; | |
inline DB csc(DB x){return (DB)1/sin(x);}; | |
//} | |
// <<= '1. Bitwise Operation ., //{ | |
namespace BO{ | |
inline bool _1(int x, int i){return bool(x&1<<i);} | |
inline bool _1(LL x, int i){return bool(x&1LL<<i);} | |
inline LL _1(int i){return 1LL<<i;} | |
inline LL _U(int i){return _1(i) - 1;}; | |
inline int reverse_bits(int x){ | |
x = ((x >> 1) & 0x55555555) | ((x << 1) & 0xaaaaaaaa); | |
x = ((x >> 2) & 0x33333333) | ((x << 2) & 0xcccccccc); | |
x = ((x >> 4) & 0x0f0f0f0f) | ((x << 4) & 0xf0f0f0f0); | |
x = ((x >> 8) & 0x00ff00ff) | ((x << 8) & 0xff00ff00); | |
x = ((x >>16) & 0x0000ffff) | ((x <<16) & 0xffff0000); | |
return x; | |
} | |
inline LL reverse_bits(LL x){ | |
x = ((x >> 1) & 0x5555555555555555LL) | ((x << 1) & 0xaaaaaaaaaaaaaaaaLL); | |
x = ((x >> 2) & 0x3333333333333333LL) | ((x << 2) & 0xccccccccccccccccLL); | |
x = ((x >> 4) & 0x0f0f0f0f0f0f0f0fLL) | ((x << 4) & 0xf0f0f0f0f0f0f0f0LL); | |
x = ((x >> 8) & 0x00ff00ff00ff00ffLL) | ((x << 8) & 0xff00ff00ff00ff00LL); | |
x = ((x >>16) & 0x0000ffff0000ffffLL) | ((x <<16) & 0xffff0000ffff0000LL); | |
x = ((x >>32) & 0x00000000ffffffffLL) | ((x <<32) & 0xffffffff00000000LL); | |
return x; | |
} | |
template<class T> inline bool odd(T x){return x&1;} | |
template<class T> inline bool even(T x){return !odd(x);} | |
template<class T> inline T low_bit(T x) {return x & -x;} | |
template<class T> inline T high_bit(T x) {T p = low_bit(x);while (p != x) x -= p, p = low_bit(x);return p;} | |
template<class T> inline T cover_bit(T x){T p = 1; while (p < x) p <<= 1;return p;} | |
template<class T> inline int cover_idx(T x){int p = 0; while (_1(p) < x ) ++p; return p;} | |
inline int clz(int x){return __builtin_clz(x);} | |
inline int clz(LL x){return __builtin_clzll(x);} | |
inline int ctz(int x){return __builtin_ctz(x);} | |
inline int ctz(LL x){return __builtin_ctzll(x);} | |
inline int lg2(int x){return !x ? -1 : 31 - clz(x);} | |
inline int lg2(LL x){return !x ? -1 : 63 - clz(x);} | |
inline int low_idx(int x){return !x ? -1 : ctz(x);} | |
inline int low_idx(LL x){return !x ? -1 : ctz(x);} | |
inline int high_idx(int x){return lg2(x);} | |
inline int high_idx(LL x){return lg2(x);} | |
inline int parity(int x){return __builtin_parity(x);} | |
inline int parity(LL x){return __builtin_parityll(x);} | |
inline int count_bits(int x){return __builtin_popcount(x);} | |
inline int count_bits(LL x){return __builtin_popcountll(x);} | |
} using namespace BO;//} | |
// <<= '2. Number Theory .,//{ | |
namespace NT{ | |
inline LL __lcm(LL a, LL b){return a*b/__gcd(a,b);} | |
inline void INC(int &a, int b){a += b; if (a >= MOD) a -= MOD;} | |
inline int sum(int a, int b){a += b; if (a >= MOD) a -= MOD; return a;} | |
inline void DEC(int &a, int b){a -= b; if (a < 0) a += MOD;} | |
inline int dff(int a, int b){a -= b; if (a < 0) a += MOD; return a;} | |
inline void MUL(int &a, int b){a = (LL)a * b % MOD;} | |
inline int pdt(int a, int b){return (LL)a * b % MOD;} | |
inline int sum(int a, int b, int c){return sum(sum(a, b), c);} | |
inline int sum(int a, int b, int c, int d){return sum(sum(a, b), sum(c, d));} | |
inline int pdt(int a, int b, int c){return pdt(pdt(a, b), c);} | |
inline int pdt(int a, int b, int c, int d){return pdt(pdt(pdt(a, b), c), d);} | |
inline int pow(int a, int b){ | |
int c(1); while (b){ | |
if (b&1) MUL(c, a); | |
MUL(a, a), b >>= 1; | |
} | |
return c; | |
} | |
inline int pow(int a, LL b){ | |
int c(1); while (b){ | |
if (b&1) MUL(c, a); | |
MUL(a, a), b >>= 1; | |
} | |
return c; | |
} | |
template<class T> inline T pow(T a, LL b){ | |
T c(1); while (b){ | |
if (b&1) c *= a; | |
a *= a, b >>= 1; | |
} | |
return c; | |
} | |
inline int _I(int b){ | |
int a = MOD, x1 = 0, x2 = 1, q; | |
while (true){ | |
q = a / b, a %= b; | |
if (!a) return (x2 + MOD) % MOD; | |
DEC(x1, pdt(q, x2)); | |
q = b / a, b %= a; | |
if (!b) return (x1 + MOD) % MOD; | |
DEC(x2, pdt(q, x1)); | |
} | |
} | |
inline void DIV(int &a, int b){MUL(a, _I(b));} | |
inline int qtt(int a, int b){return pdt(a, _I(b));} | |
inline int phi(int n){ | |
int res = n; for (int i=2;sqr(i)<=n;++i) if (!(n%i)){ | |
DEC(res, qtt(res, i)); | |
do{n /= i;} while(!(n%i)); | |
} | |
if (n != 1) | |
DEC(res, qtt(res, n)); | |
return res; | |
} | |
} using namespace NT;//} | |
// <<= '7. Matrix Theory .,//{ | |
namespace MT{ | |
const int N = 100; | |
int n = 0; | |
typedef int rec; | |
struct matrix{ | |
rec d[N][N]; | |
void init(rec e = 0){RST(d); if(e) REP(i, n) d[i][i] = e;} | |
matrix(rec e = 0){init(e);} | |
matrix operator *(const matrix &rhs) const{ | |
matrix res; //REP_3(i, j, k, n, n, n) res.d[i][j] += d[i][k] * rhs.d[k][j]; | |
REP_2(i, j, n, n){ | |
LL tmp = 0; REP(k, n) tmp += (LL) d[i][k] * rhs.d[k][j]; | |
res.d[i][j] = tmp % MOD; | |
} | |
return res; | |
} | |
matrix& operator *=(const matrix& rhs){(*this) = (*this) * rhs;} | |
inline int res(){ | |
int res = 0; | |
REP(i, n) INC(res, d[0][i]); | |
//REP_2(i, j, n, n) INC(res, d[i][j]); | |
return res; | |
} | |
}; | |
/*inline matrix pow_sum(const matrix& a, ULL nn){ | |
if (nn == 1) return matrix(1); | |
matrix t; REP_2(i, j, n, n) t.d[i][j] = t.d[i][j+n] = a.d[i][j]; | |
FOR_C(i, n, n*2) t.d[i][i] = 1; n <<= 1; t = pow(t, nn), n >>= 1; | |
REP_2(i, j, n, n) t.d[i][j] = t.d[i][j+n]; | |
return t; | |
}*/ | |
inline matrix pow_sum(const matrix& a, ULL nn){ | |
if (nn == 1) return matrix(1); | |
matrix t; REP_2(i, j, n, n) t.d[i][j] = a.d[i][j]; | |
REP(i, n) t.d[i][i+n] = t.d[i+n][i+n] = 1; n <<= 1; t = pow(t, nn), n >>= 1; | |
REP_2(i, j, n, n) t.d[i][j] = t.d[i][j+n]; | |
return t; | |
} | |
template<class T> T pow_sum(T a, ULL nn){ | |
int _n = n; n = 1; matrix t; t.d[0][0] = a; | |
t = pow_sum(t, nn), n = _n; | |
return t.d[0][0]; | |
} | |
} // using namespace MT;//} | |
// <<= '8. Stringology .,//{ | |
namespace SL{ | |
namespace KMP{ | |
void calc_PI(const char *P, int n, int *PI){ | |
for (int i = 1, j = PI[0] = -1; i < n; ++i){ | |
while (j >= 0 && P[i] != P[j+1]) j = PI[j]; | |
if (P[i] == P[j+1]) ++j; | |
PI[i] = j; | |
} | |
//REP(i, n) cout << PI[i] << " "; cout << endl; | |
} | |
bool run(const char *T, int n, const char *P, int m, const int *PI){ | |
for (int i = 0, j = -1; i < n; ++i){ | |
while (j >= 0 && T[i] != P[j+1]) j = PI[j]; | |
if (T[i] == P[j+1]) ++j; | |
if (j == m - 1) return true; | |
} | |
return false; | |
} | |
} //using namespace KMP; | |
namespace Z{ | |
void calc_z(const char *P, int n, int *z){ | |
z[0] = n; | |
for (int i = 1, l = 0, r = 0; i < n; ++i){ | |
if (i > r){ | |
for(l = r = i; r < n && P[r] == P[r - l];) ++r; | |
z[i] = r - l, --r; | |
} | |
else { | |
if (z[i - l] < r - i + 1) z[i] = z[i - l]; | |
else { | |
for (l = i;r < n && P[r] == P[r - l];) ++r; | |
z[i] = r - l, --r; | |
} | |
} | |
} | |
//REP(i, n) cout << z[i] << " "; cout << endl; | |
} | |
int run(const char *T, int n, const char *P, int m, const int *z){ | |
int ex; REP_C_N(ex, min(n, m)) if (T[ex] != P[ex]) break; | |
int res = ex == m; | |
for (int i = 1, l = 0, r = 0; i < n; ++i){ | |
if (i > r){ | |
for (l = r = i; r < n && T[r] == P[r - l];) ++r; | |
ex = r - l, --r; | |
} | |
else { | |
if (z[i - l] < r - i + 1) ex = z[i - l]; | |
else { | |
for (l = i; r < n && T[r] == P[r - l];) ++r; | |
ex = r - l, --r; | |
} | |
} | |
if (ex == m) ++res; | |
} | |
return res; | |
} | |
} //using namespace Z; | |
void Manacher(char s[], int n, int p[]){ | |
const int NN = 0; | |
static char ss[NN*2+2]; int nn = 2*n+2; | |
ss[0] = '$', ss[nn-1] = '#', ss[nn] = 0; | |
REP(i, n) ss[i*2+1] ='#', ss[i*2+2] = s[i]; | |
int mx = 0, id = 0; FOR(i, 1, nn){ | |
p[i] = mx > i ? min(p[2*id-i], mx - i) : 1; | |
while (ss[i+p[i]] == ss[i-p[i]]) ++p[i]; | |
if (i + p[i] > mx) mx = i + p[i], id = i; | |
} | |
} | |
} //using namespace SL;//} | |
// <<= '9. Comutational Geometry .,//{ | |
namespace CG{ | |
struct Po; struct Line; struct Seg; | |
struct Po{ | |
DB x, y; Po(DB _x=0, DB _y=0):x(_x), y(_y){} | |
friend istream& operator >>(istream& in, Po &p){return in >> p.x >> p.y;} | |
friend ostream& operator <<(ostream& out, Po p){return out << "(" << p.x << ", " << p.y << ")";} | |
bool operator ==(const Po& r)const{return !sgn(x-r.x) && !sgn(y-r.y);}; | |
bool operator !=(const Po& r)const{return sgn(x-r.x) || sgn(y-r.y);} | |
Po operator +(const Po& r)const{return Po(x+r.x, y+r.y);} | |
Po operator -(const Po& r)const{return Po(x-r.x, y-r.y);} | |
Po operator *(DB k)const{return Po(x*k,y*k);} | |
Po operator /(DB k)const{return Po(x/k,y/k);} | |
DB operator *(const Po&) const; | |
DB operator ^(const Po&) const; | |
bool operator <(const Po &r) const{return sgn(x,r.x)<0||!sgn(x,r.x)&&sgn(y,r.y)<0;} | |
Po operator -()const{return Po(-x,-y);} | |
Po& operator +=(const Po &r){x+=r.x,y+=r.y;return *this;} | |
Po& operator -=(const Po &r){x-=r.x,y-=r.y;return *this;} | |
Po& operator *=(DB k){x*=k,y*=k;return*this;} | |
Po& operator /=(DB k){x/=k,y/=k;return*this;} | |
DB length_sqr()const{return sqr(x)+sqr(y);} | |
DB length()const{return sqrt(length_sqr());} | |
Po unit()const{return *this/length();} | |
bool dgt()const{return !sgn(x)&&!sgn(y);} | |
DB atan()const{return atan2(y,x);} | |
void rotate(DB alpha, const Po& o = Po()){ | |
x -= o.x, y -= o.y; | |
(*this) = Po(x * cos(alpha) - y * sin(alpha), y * cos(alpha) + x * sin(alpha)) + o; | |
} | |
void input(){RF(x,y);} | |
}; | |
Po operator *(DB k, Po a){return a * k;} | |
#define innerProduct dot | |
#define scalarProduct dot | |
#define outerProduct det | |
#define crossProduct det | |
inline DB dot(const DB &x1, const DB &y1, const DB &x2, const DB &y2){return x1 * x2 + y1 * y2;} | |
inline DB dot(const Po &a, const Po &b){return dot(a.x, a.y, b.x, b.y);} | |
inline DB dot(const Po &p0, const Po &p1, const Po &p2){return dot(p1 - p0, p2 - p0);} | |
inline DB det(const DB &x1, const DB &y1, const DB &x2, const DB &y2){return x1 * y2 - x2 * y1;} | |
inline DB det(const Po &a, const Po &b){return det(a.x, a.y, b.x, b.y);} | |
inline DB det(const Po &p0, const Po &p1, const Po &p2){return det(p1 - p0, p2 - p0);} | |
template<class T1, class T2> inline int dett(const T1 &x, const T2 &y){return sgn(det(x, y));} | |
template<class T1, class T2> inline int dott(const T1 &x, const T2 &y){return sgn(dot(x, y));} | |
template<class T1, class T2, class T3> inline int dett(const T1 &x, const T2 &y, const T3 &z){return sgn(det(x, y, z));} | |
template<class T1, class T2, class T3> inline int dott(const T1 &x, const T2 &y, const T3 &z){return sgn(dot(x, y, z));} | |
template<class T1, class T2, class T3, class T4> inline int dett(const T1 &x, const T2 &y, const T3 &z, const T4 &w){return sgn(det(x, y, z, w));} | |
template<class T1, class T2, class T3, class T4> inline int dott(const T1 &x, const T2 &y, const T3 &z, const T4 &w){return sgn(dot(x, y, z, w));} | |
inline DB dist_sqr(const DB &x, const DB &y){return sqr(x) + sqr(y);} | |
inline DB dist_sqr(const DB &x, const DB &y, const DB &z){return sqr(x) + sqr(y) + sqr(z);} | |
inline DB dist_sqr(const Po &a, const Po &b){return sqr(a.x - b.x) + sqr(a.y - b.y);} | |
template<class T1, class T2> inline DB dist(const T1 &x, const T2 &y){return sqrt(dist_sqr(x, y));} | |
template<class T1, class T2, class T3> inline DB dist(const T1 &x, const T2 &y, const T3 &z){return sqrt(dist_sqr(x, y, z));} | |
DB Po::operator *(const Po &r)const{return dot(*this, r);} | |
DB Po::operator ^(const Po &r)const{return det(*this, r);} | |
struct Line{ | |
Po a, b; | |
Line(DB x0=0, DB y0=0, DB x1=0, DB y1=0):a(Po(x0, y0)), b(Po(x1, y1)){} | |
Line(const Po &a, const Po &b):a(a), b(b){} | |
Line(const Line &l):a(l.a), b(l.b){} | |
friend ostream& operator <<(ostream& out, Line p){return out << p.a << "-" << p.b;} | |
Line operator +(Po x)const{return Line(a + x, b + x);} | |
DB length()const{return (b-a).length();} | |
bool dgt()const{return (b-a).dgt();} | |
void input(){a.input(), b.input();} | |
int side(const Po& p){return dett(a, b, p);} | |
bool same_side(const Po& p1, const Po& p2){return side(p1) == side(p2);} | |
void getequation(DB& A, DB& B, DB& C) const{A = a.y - b.y, B = b.x - a.x, C = det(a, b);} | |
}; | |
struct Seg: Line{ | |
}; | |
inline DB dot(const Line &l1, const Line &l2){return dot(l1.b - l1.a, l2.b - l2.a);} | |
inline DB det(const Line &l1, const Line &l2){return det(l1.b - l1.a, l2.b - l2.a);} | |
inline DB dist_sqr(const Po &p, const Line &l){Po v0 = l.b - l.a, v1 = p - l.a; return sqr(fabs(det(v0, v1))) / v0.length_sqr();} | |
inline DB dist_sqr(const Po &p, const Seg &l){ | |
Po v0 = l.b - l.a, v1 = p - l.a, v2 = p - l.b; | |
if (sgn(dot(v0, v1)) * sgn(dot(v0, v2)) <= 0) return dist_sqr(p, Line(l)); | |
else return min(v1.length_sqr(), v2.length_sqr()); | |
} | |
inline DB dist_sqr(Line l, Po p){return dist_sqr(p, l);} | |
inline DB dist_sqr(Seg l, Po p){return dist_sqr(p, l);} | |
inline DB dist_sqr(Line l1, Line l2){ | |
if (sgn(det(l1, l2)) != 0) return 0; | |
return dist_sqr(l1.a, l2); | |
} | |
inline DB dist_sqr(Line l1, Seg l2){ | |
Po v0 = l1.b - l1.a, v1 = l2.a - l1.a, v2 = l2.b - l1.a; DB c1 = det(v0, v1), c2 = det(v0, v2); | |
return sgn(c1) != sgn(c2) ? 0 : sqr(min(fabs(c1), fabs(c2))) / v0.length_sqr(); | |
} | |
bool isIntersect(Seg l1, Seg l2){ | |
if (l1.a == l2.a || l1.a == l2.b || l1.b == l2.a || l1.b == l2.b) return true; | |
return | |
min(l1.a.x, l1.b.x) <= max(l2.a.x, l2.b.x) && | |
min(l2.a.x, l2.b.x) <= max(l1.a.x, l1.b.x) && | |
min(l1.a.y, l1.b.y) <= max(l2.a.y, l2.b.y) && | |
min(l2.a.y, l2.b.y) <= max(l1.a.y, l1.b.y) && | |
sgn( det(l1.a, l2.a, l2.b) ) * sgn( det(l1.b, l2.a, l2.b) ) <= 0 && | |
sgn( det(l2.a, l1.a, l1.b) ) * sgn( det(l2.b, l1.a, l1.b) ) <= 0; | |
} | |
inline DB dist_sqr(Seg l1, Seg l2){ | |
if (isIntersect(l1, l2)) return 0; | |
else return min(dist_sqr(l1.a, l2), dist_sqr(l1.b, l2), dist_sqr(l2.a, l1), dist_sqr(l2.b, l1)); | |
} | |
inline bool isOnSide(const Po &p, const Seg &l){ | |
return p == l.a || p == l.b; | |
} | |
inline bool isOnSeg(const Po &p, const Seg &l){ | |
return sgn(det(p, l.a, l.b)) == 0 && | |
sgn(l.a.x, p.x) * sgn(l.b.x, p.x) <= 0 && sgn(l.a.y, p.y) * sgn(l.b.y, p.y) <= 0; | |
} | |
inline bool isOnSegg(const Po &p, const Seg &l){ | |
return sgn(det(p, l.a, l.b)) == 0 && | |
sgn(l.a.x, p.x) * sgn(l.b.x, p.x) < 0 && sgn(l.a.y, p.y) * sgn(l.b.y, p.y) < 0; | |
} | |
inline Po intersect(const Line &l1, const Line &l2){ | |
return l1.a + (l1.b - l1.a) * (det(l2.a, l1.a, l2.b) / det(l2, l1)); | |
} | |
// perpendicular foot | |
inline Po intersect(const Po & p, const Line &l){ | |
return intersect(Line(p, p + Po(l.a.y - l.b.y, l.b.x - l.a.x)), l); | |
} | |
inline Po rotate(Po p, DB alpha, const Po &o = Po()){ | |
p.rotate(alpha, o); | |
return p; | |
} | |
} using namespace CG;//} | |
//} | |
/** Miscellaneous .. **/ //{ | |
// <<= 'Random Event .. . //{ | |
namespace RNG{ | |
//srand((unsigned)time(NULL)); | |
inline unsigned int rand16(){return ((rand()) << 15) ^ rand();} | |
inline unsigned int rand32(){return (rand16() << 16) | rand16();} | |
inline ULL rand64(){return ((LL)rand32() << 32) | rand32();} | |
inline ULL random(LL l, LL r){return l == r ? l : rand64() % (r - l) + l;} | |
int dice(){return rand() % 6;} | |
bool coin(){return bool(rand() % 2);} | |
} using namespace RNG; | |
//} | |
// <<= 'Clock .. . //{ | |
namespace CLOCK{ | |
DB s0, s1, rd, k, T; | |
inline DB getTime(){ | |
#ifdef LOCAL | |
return 1.0 * clock() / CLOCKS_PER_SEC; | |
#else | |
timeval tv; | |
gettimeofday(&tv, 0); | |
return tv.tv_sec + tv.tv_usec * 1e-6; | |
#endif | |
} | |
inline void st0(DB _T = 0.98){T = _T, s0 = getTime();} | |
inline void st1(DB _k = 1.618){k = _k, s1 = getTime();} | |
inline void ed1(){rd = getTime() - s1;} | |
inline DB elapsed(){return getTime() - s0;} | |
inline bool TLE(){return elapsed() + rd * k < T;} | |
} //using namespace CLOCK; | |
//} | |
// <<= 'Temp .. . //{ | |
namespace TMP{ | |
template<class T> PTT operator+(const PTT &p1, const PTT &p2) { | |
return PTT(p1.fi + p2.fi, p1.se + p2.se); | |
} | |
template<class T> PTT operator-(const PTT &p1, const PTT &p2) { | |
return PTT(p1.fi - p2.fi, p1.se - p2.se); | |
} | |
template<class T> PTT operator*(const PTT &lhs, T k){ | |
return PTT(lhs.fi * k, lhs.se * k); | |
} | |
} using namespace TMP; | |
//} | |
// <<= 'Bignum ., //{ | |
namespace BIGNUM{ | |
const int __base = 1e8; | |
const int P10[] = {1, 10, int(1e2), int(1e3), int(1e4), int(1e5), int(1e6), int(1e7), int(1e8), int(1e9)}; | |
const int MAX_BUF_SIZE = 109; | |
char __buf[MAX_BUF_SIZE]; | |
class bignum{ | |
friend istream& operator>>(istream&, bignum&); | |
friend ostream& operator<<(ostream&, const bignum&); | |
friend bignum operator +(const bignum&, const bignum&); | |
friend bignum operator -(const bignum&, const bignum&); | |
friend bignum operator *(const bignum&, const bignum&); | |
friend bignum operator /(const bignum&, const bignum&); | |
friend bignum operator %(const bignum&, const bignum&); | |
friend bignum operator +(const bignum&, const int&); | |
friend bignum operator -(const bignum&, const int&); | |
friend bignum operator *(const bignum&, const int&); | |
friend bignum operator /(const bignum&, const int&); | |
friend bignum operator %(const bignum&, const int&); | |
friend bool operator ==(const bignum&, const bignum&); | |
friend bool operator !=(const bignum&, const bignum&); | |
friend bool operator <(const bignum&, const bignum&); | |
friend bool operator >(const bignum&, const bignum&); | |
friend bool operator <=(const bignum&, const bignum&); | |
friend bool operator >=(const bignum&, const bignum&); | |
friend bool operator ==(const bignum&, const int&); | |
friend bool operator !=(const bignum&, const int&); | |
friend bool operator <(const bignum&, const int&); | |
friend bool operator >(const bignum&, const int&); | |
friend bool operator <=(const bignum&, const int&); | |
friend bool operator >=(const bignum&, const int&); | |
friend int do_comp(const bignum&, const int&); | |
friend int do_comp(const bignum&, const bignum&); | |
friend void divide(const bignum&, const bignum&, bignum&, bignum&); | |
friend bignum pow(bignum, int); | |
friend bignum pow(int, int); | |
public: | |
inline bignum(){}; | |
inline bignum(int s){ | |
while (s) data.PB(s%__base), s/=__base; | |
if (data.empty()) data.PB(0); | |
} | |
inline bignum(long long s){ | |
while (s) data.PB(int(s%__base)), s/=__base; | |
if (data.empty()) data.PB(0); | |
} | |
inline bignum(string s){ | |
int t, i; CLR(data); | |
for (i=int(s.size())-8;i>0;i-=8){ | |
istringstream(s.substr(i, 8)) >> t; | |
data.PB(t); | |
} | |
istringstream(s.substr(0, i+8)) >> t; | |
data.PB(t); | |
} | |
void input(){ | |
CLR(data); RS(__buf); int t = 0, c = 0; | |
DWN(i, strlen(__buf), 0){ | |
t += P10[c] * (int(__buf[i]) - '0'), ++c; | |
if (c == 8) data.PB(t), c = t = 0; | |
} | |
if (c) data.PB(t); | |
} | |
void operator =(const int); | |
void operator =(const string); | |
void operator =(const bignum); | |
bignum& operator +=(const bignum&); | |
bignum& operator -=(const bignum&); | |
bignum& operator *=(const bignum&); | |
bignum& operator /=(const bignum&); | |
bignum& operator %=(const bignum&); | |
bignum& operator +=(const int&); | |
bignum& operator -=(const int&); | |
bignum& operator *=(const int&); | |
bignum& operator /=(const int&); | |
bignum& operator %=(const int&); | |
bool undefined(); | |
int do_try(const int&); | |
int do_try(const bignum&); | |
void do_trim(); | |
list<int> data; | |
int size(){ | |
list<int>::iterator it; int res = 0; | |
for (it=data.begin(); it!=data.end();it++) | |
res += 8; | |
it--; | |
if (*it >= 10000) { | |
if ( (*it) >= 1000000) {if (*it >=10000000) ; else res--;} | |
else {if ((*it) >= 100000) res-=2; else res-=3;} | |
} | |
else | |
if ( (*it) >= 100) {if (*it >=1000) res-=4; else res-=5;} | |
else {if ((*it) >= 10) res-=6; else res-=7;} | |
return res; | |
} | |
void do_reserve(int a){ | |
if (a <= 0) return; | |
list<int>::iterator it; | |
for (it=data.begin(); it!=data.end() && a>0; it++) a-=8; | |
if (it == data.end() && a>=0) return; | |
a+=8, it--; int f = 1; | |
for (int i=0;i<a;i++) f *= 10; (*it) %= f; | |
data.erase(++it, data.end()); | |
do_trim(); | |
} | |
}; | |
inline void bignum::operator =(const bignum a){ | |
data.clear(); | |
for (list<int>::const_iterator i=a.data.begin();i!=a.data.end();i++){ | |
data.PB(*i); | |
} | |
} | |
inline void bignum::operator =(const string a){ | |
(*this) = bignum(a); | |
} | |
inline void bignum::operator =(const int a){ | |
(*this) = bignum(a); | |
} | |
inline istream& operator>>(istream& input, bignum& a){ | |
string s; int t, i; input >> s; a.data.clear(); | |
for (i=int(s.size())-8;i>0;i-=8){ | |
istringstream(s.substr(i, 8)) >> t; | |
a.data.PB(t); | |
} | |
istringstream(s.substr(0, i+8)) >> t; | |
a.data.PB(t); | |
return input; | |
} | |
inline ostream& operator<<(ostream& output, const bignum& a){ | |
list<int>::const_reverse_iterator i=a.data.rbegin(); | |
output << *i; | |
for (i++;i!=a.data.rend();i++){ | |
if (*i >= 10000) { | |
if (*i >= 1000000) {if (*i>=10000000) cout << *i; else cout << 0 << *i;} | |
else {if (*i>=100000) cout << "00" << *i; else cout << "000" << *i;} | |
} | |
else { | |
if (*i >= 100) {if (*i>=1000) cout << "0000" << *i; else cout << "00000" << *i;} | |
else { if (*i>=10) cout << "000000" << *i; else cout << "0000000" << *i;} | |
} | |
} | |
return output; | |
} | |
inline bool bignum::undefined(){ | |
return data.empty(); | |
} | |
inline int do_comp(const bignum& a, const bignum& b){ | |
if (a.data.size()<b.data.size()) return -1; if (a.data.size()>b.data.size()) return 1; | |
list<int>::const_reverse_iterator i; list<int>::const_reverse_iterator j; | |
for (i=a.data.rbegin(),j=b.data.rbegin(); j!=b.data.rend(); i++,j++){ | |
if (*i<*j) return -1; //!!!! | |
if (*i>*j) return 1; | |
} | |
return 0; | |
} | |
inline int do_comp(const bignum& a, const int& b){ | |
return do_comp(a, bignum(b)); | |
} | |
inline bool operator ==(const bignum& a, const bignum& b){ | |
return do_comp(a, b) == 0; | |
} | |
inline bool operator !=(const bignum& a, const bignum& b){ | |
return do_comp(a, b) != 0; | |
} | |
inline bool operator <(const bignum& a, const bignum& b){ | |
return do_comp(a, b) == -1; | |
} | |
inline bool operator >(const bignum& a, const bignum& b){ | |
return do_comp(a, b) == 1; | |
} | |
inline bool operator <=(const bignum& a, const bignum& b){ | |
return do_comp(a, b) != 1; | |
} | |
inline bool operator >=(const bignum& a, const bignum& b){ | |
return do_comp(a, b) != -1; | |
} | |
inline bool operator ==(const bignum& a, const int& b){ | |
return do_comp(a, b) == 0; | |
} | |
inline bool operator !=(const bignum& a, const int& b){ | |
return do_comp(a, b) != 0; | |
} | |
inline bool operator <(const bignum& a, const int& b){ | |
return do_comp(a, b) == -1; | |
} | |
inline bool operator >(const bignum& a, const int& b){ | |
return do_comp(a, b) == 1; | |
} | |
inline bool operator <=(const bignum& a, const int& b){ | |
return do_comp(a, b) != 1; | |
} | |
inline bool operator >=(const bignum& a, const int& b){ | |
return do_comp(a, b) != -1; | |
} | |
inline void bignum::do_trim(){ | |
while (data.size()>1&&data.back()==0) data.pop_back(); | |
} | |
inline bignum& bignum::operator +=(const bignum& a){ | |
list<int>::iterator i; list<int>::const_iterator j; int t = 0; | |
for (i=data.begin(),j=a.data.begin(); i!=data.end()&&j!=a.data.end(); i++,j++){ | |
*i+=*j+t; t=*i/__base; *i%=__base; | |
} | |
while (i!=data.end()) {*i+=t; t=*i/__base; *i%=__base; i++;} | |
while (j!=a.data.end()) {data.PB(t+*j); t=data.back()/__base; data.back()%=__base; j++;} | |
if (t!=0) data.PB(t); | |
return *this; | |
} | |
inline bignum& bignum::operator -=(const bignum& a){ | |
list<int>::iterator i; list<int>::const_iterator j; int t = 0; | |
for (i=data.begin(),j=a.data.begin(); j!=a.data.end(); i++,j++){ | |
*i -= t+*j; if (*i>=0) t=0; else *i+=__base, t=1; | |
} | |
while (i!=data.end()) {*i-=t; if (*i>=0) t=0;else *i+=__base, t=1; i++;} | |
(*this).do_trim(); | |
return *this; | |
} | |
inline bignum& bignum::operator +=(const int& a){ | |
return (*this)+=bignum(a); | |
} | |
inline bignum& bignum::operator -=(const int& a){ | |
return (*this)-=bignum(a); | |
} | |
inline bignum operator +(const bignum& a, const bignum& b){ | |
list<int>::const_iterator i, j; bignum c; int t = 0; | |
for (i=a.data.begin(),j=b.data.begin(); i!=a.data.end()&&j!=b.data.end(); i++,j++){ | |
c.data.PB(t+*i+*j); | |
t=c.data.back()/__base; c.data.back()%=__base; | |
} | |
while (i!=a.data.end()) {c.data.PB(t+*i); t=c.data.back()/__base; c.data.back()%=__base; i++;} | |
while (j!=b.data.end()) {c.data.PB(t+*j); t=c.data.back()/__base; c.data.back()%=__base; j++;} | |
if (t!=0) c.data.PB(t); | |
return c; | |
} | |
inline bignum operator -(const bignum& a, const bignum& b){ | |
list<int>::const_iterator i, j; bignum c; int t = 0; | |
for (i=a.data.begin(),j=b.data.begin(); j!=b.data.end(); i++,j++){ | |
t = *i - t; | |
if (t>=*j) c.data.PB(t-*j), t=0; | |
else c.data.PB(t+__base-*j), t=1; | |
} | |
while (i!=a.data.end()) {t=*i-t; if (t>=0) c.data.PB(t), t=0;else c.data.PB(t+__base), t=1; i++;} | |
c.do_trim(); | |
return c; | |
} | |
inline bignum operator *(const bignum& a, const bignum& b){ | |
list<int>::const_iterator i, j; list<int>::iterator k, kk; bignum c; long long t = 0; | |
for (int i=0;i<a.data.size()+b.data.size();i++) c.data.PB(0); | |
for (i=a.data.begin(),k=c.data.begin(); i!=a.data.end(); i++,k++){ | |
for (j=b.data.begin(),kk=k; j!=b.data.end(); j++,kk++){ | |
t+=(long long)(*i)*(*j)+(*kk); | |
*kk=int(t%__base); t/=__base; | |
} | |
*kk+=t; t=0; | |
} | |
c.do_trim(); | |
return c; | |
} | |
inline int bignum::do_try(const bignum& a){ | |
int l = 1, r = 99999999, m, t; | |
while (l+2<r){ | |
m = (l + r) / 2; | |
t = do_comp(*this, a*bignum(m)); | |
if (t==0) return m; | |
if (t<0) r = m - 1; | |
else l = m; | |
} | |
while (do_comp(*this, a*bignum(r))<0) r--; | |
return r; | |
} | |
inline void divide(const bignum& a, const bignum& b, bignum& d, bignum& r){ | |
list<int>::const_reverse_iterator i = a.data.rbegin(); int t; | |
d = bignum(0); r = bignum(0); | |
do { | |
while (r<b&&i!=a.data.rend()){d.data.push_front(0);r.data.push_front(*i);r.do_trim();i++;} | |
if (r>=b){ | |
t = r.do_try(b); d.data.front() = t; | |
r-=(b*bignum(t)); | |
} | |
} while (i!=a.data.rend()); | |
d.do_trim(); | |
} | |
inline bignum operator /(const bignum& a, const bignum& b){ | |
bignum d, r; | |
divide(a, b, d, r); | |
return d; | |
} | |
inline bignum operator %(const bignum& a, const bignum& b){ | |
bignum d, r; | |
divide(a, b, d, r); | |
return r; | |
} | |
inline bignum operator +(const bignum& a, const int& b){ | |
return a+bignum(b); | |
} | |
inline bignum operator -(const bignum& a, const int& b){ | |
return a-bignum(b); | |
} | |
inline bignum operator *(const bignum& a, const int& b){ | |
return a*bignum(b); | |
} | |
inline bignum operator /(const bignum& a, const int& b){ | |
return a/bignum(b); | |
} | |
inline bignum operator %(const bignum& a, const int& b){ | |
return a%bignum(b); | |
} | |
inline bignum& bignum::operator *=(const bignum& a){ | |
(*this) = (*this) * a; | |
return *this; | |
} | |
inline bignum& bignum::operator /=(const bignum& a){ | |
(*this) = (*this) / a; | |
return *this; | |
} | |
inline bignum& bignum::operator %=(const bignum& a){ | |
(*this) = (*this) % a; | |
return *this; | |
} | |
inline bignum& bignum::operator *=(const int& a){ | |
return (*this)*=bignum(a); | |
} | |
inline bignum& bignum::operator /=(const int& a){ | |
return (*this)/=bignum(a); | |
} | |
inline bignum& bignum::operator %=(const int& a){ | |
return (*this)%=bignum(a); | |
} | |
inline bignum pow(bignum a,int b){ | |
bignum c(1); | |
while (b!=0) { | |
if (b&1) c *= a; | |
a = a * a; b >>= 1; | |
} | |
return c; | |
} | |
inline bignum pow(int a, int b){ | |
return pow(bignum(a), b); | |
} | |
} //using namespace BIGNUM; | |
//} | |
//} | |
/** I/O Accelerator Interface .. **/ //{ | |
template<class T> inline T& RD(T &x){ | |
//cin >> x; | |
//scanf("%d", &x); | |
char c; for (c = getchar(); c < '0'; c = getchar()); x = c - '0'; for (c = getchar(); '0' <= c && c <= '9'; c = getchar()) x = x * 10 + c - '0'; | |
//char c; c = getchar(); x = c - '0'; for (c = getchar(); c >= '0'; c = getchar()) x = x * 10 + c - '0'; | |
return x; | |
} | |
inline DB& RF(DB &x){ | |
//cin >> x; | |
scanf("%lf", &x); | |
/*char t; while ((t=getchar())==' '||t=='\n'); x = t - '0'; | |
while ((t=getchar())!=' '&&t!='\n'&&t!='.')x*=10,x+=t-'0'; | |
if (t=='.'){DB l=1; while ((t=getchar())!=' '&&t!='\n')l*=0.1,x += (t-'0')*l;}*/ | |
return x; | |
} | |
inline char* RS(char *s){ | |
//gets(s); | |
scanf("%s", s); | |
return s; | |
} | |
LL last_ans; int Case; template<class T> inline void OT(const T &x){ | |
//printf("Case %d: %d\n", ++Case, x); | |
//printf("%lld ", x); | |
printf("%d\n", x); | |
//cout << x << endl; | |
//last_ans = x; | |
} | |
//} | |
//}/* .................................................................................................................................. */ | |
/* | |
struct Int{ | |
int val; | |
operator int() const{return val;} | |
Int(int val = 0):val(val){ | |
val %= MOD; if (val < 0) val += MOD; | |
} | |
inline Int& operator +=(const Int& rhs){ | |
INC(val, rhs); | |
return *this; | |
} | |
inline Int operator +(const Int& rhs) const{ | |
return sum(val, rhs.val); | |
} | |
inline Int& operator -=(const Int& rhs){ | |
DEC(val, rhs); | |
return *this; | |
} | |
inline Int operator -(const Int& rhs) const{ | |
return dff(val, rhs); | |
} | |
inline Int& operator *=(const Int& rhs){ | |
MUL(val, rhs); | |
return *this; | |
} | |
inline Int operator *(const Int& rhs) const{ | |
return pdt(val, rhs); | |
} | |
inline Int& operator /=(const Int& rhs){ | |
DIV(val, rhs); | |
return *this; | |
} | |
inline Int operator /(const Int& rhs) const{ | |
return qtt(val, rhs); | |
} | |
}; | |
*/ | |
const int N = 20; | |
int F0[N][2][7][7], F1[N][2][7][7], F2[N][2][7][7]; /// 是否出现了 7, 数位和%7,本身%7。。。 | |
int Pow10[N]; int a[N], n; | |
#define v0 n-1, _7||i==7, (s+i)%7, (m*10+i)%7, 0 | |
#define v1 n-1, _7||i==7, (s+i)%7, (m*10+i)%7, 1 | |
int f0(int n, bool _7, int s, int m, bool b){ | |
if (n<0) return _7 || !s || !m; | |
if (b){ | |
int res = 0; int up = a[n], i; | |
REP_N(i, up) INC(res, f0(v0)); | |
INC(res, f0(v1)); | |
return res; | |
} | |
else { | |
int &res = F0[n][_7][s][m]; | |
if (res == -1){ | |
res = 0; int up = 10, i; | |
REP_N(i, up) INC(res, f0(v0)); | |
} | |
return res; | |
} | |
} | |
#define x pdt(Pow10[n], i) | |
int f1(int n, bool _7, int s, int m, bool b){ | |
if (n<0) return 0; | |
if (b){ | |
int res = 0; int up = a[n], i; | |
REP_N(i, up) INC(res, sum(f1(v0), pdt(f0(v0), x))); | |
INC(res, sum(f1(v1), pdt(f0(v1), x))); | |
return res; | |
} | |
else { | |
int &res = F1[n][_7][s][m]; | |
if (res == -1){ | |
res = 0; int up = 10, i; | |
REP_N(i, up) INC(res, sum(f1(v0), pdt(f0(v0), x))); | |
} | |
return res; | |
} | |
} | |
int f2(int n, bool _7, int s, int m, bool b){ | |
if (n<0) return 0; | |
if (b){ | |
int res = 0; int up = a[n], i; | |
REP_N(i, up) INC(res, sum(f2(v0), pdt(f1(v0), x, 2), pdt(f0(v0), x, x))); | |
INC(res, sum(f2(v1), pdt(f1(v1), x, 2), pdt(f0(v1), x, x))); | |
return res; | |
} | |
else { | |
int &res = F2[n][_7][s][m]; | |
if (res == -1){ | |
res = 0; int up = 10, i; | |
REP_N(i, up) INC(res, sum(f2(v0), pdt(f1(v0), x, 2), pdt(f0(v0), x, x))); | |
} | |
return res; | |
} | |
} | |
#undef x | |
int s2(LL x){ | |
int a = x % MOD, b = (x+1) % MOD, c = (2*x+1) % MOD; | |
return pdt(a,b,c,_I(6)); | |
} | |
int f(LL x){ | |
if (!x) return 0; | |
n = 0; int s = s2(x); while (x) a[n++] = x % 10, x /= 10; | |
return dff(s, f2(n-1, 0, 0, 0, 1)); | |
} | |
int main(){ | |
#ifndef ONLINE_JUDGE | |
freopen("in.txt", "r", stdin); | |
//freopen("out.txt", "w", stdout); | |
#endif | |
Pow10[0] = 1; FOR(i, 1, N) Pow10[i] = pdt(Pow10[i-1], 10); | |
FLC(F0, F1, F2, -1); | |
Rush{ | |
LL l, r; RD(l, r); | |
OT(dff(f(r), f(l-1))); | |
} | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment