Created
August 22, 2017 22:54
-
-
Save lyjia/3372ea2ea54a881081fcb101e2d4af0b to your computer and use it in GitHub Desktop.
bresenham.c
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
/******************************************************************** | |
* * | |
* Curve Rasterizing Algorithm * | |
* * | |
********************************************************************/ | |
/** | |
* @author Zingl Alois | |
* @date 22.08.2016 | |
* @version 1.2 | |
*/ | |
void plotLine(int x0, int y0, int x1, int y1) | |
{ | |
int dx = abs(x1-x0), sx = x0<x1 ? 1 : -1; | |
int dy = -abs(y1-y0), sy = y0<y1 ? 1 : -1; | |
int err = dx+dy, e2; /* error value e_xy */ | |
for (;;) { /* loop */ | |
setPixel(x0,y0); | |
e2 = 2*err; | |
if (e2 >= dy) { /* e_xy+e_x > 0 */ | |
if (x0 == x1) break; | |
err += dy; x0 += sx; | |
} | |
if (e2 <= dx) { /* e_xy+e_y < 0 */ | |
if (y0 == y1) break; | |
err += dx; y0 += sy; | |
} | |
} | |
} | |
void plotLine3d (int x0, int y0, int z0, int x1, int y1, int z1) | |
{ | |
int dx = abs(x1-x0), sx = x0 < x1 ? 1 : -1; | |
int dy = abs(y1-y0), sy = y0 < y1 ? 1 : -1; | |
int dz = abs(z1-z0), sz = z0 < z1 ? 1 : -1; | |
int dm = dx > dy && dx > dz ? dx : dy > dz ? dy : dz, i = dm; /* max diff */ | |
x1 = y1 = z1 = dm/2; /* error offset */ | |
for (;;) { | |
setPixel(x0,y0,z0); | |
if (i-- == 0) break; | |
x1 -= dx; if (x1 < 0) { x1 += dm; x0 += sx; } | |
y1 -= dy; if (y1 < 0) { y1 += dm; y0 += sy; } | |
z1 -= dz; if (z1 < 0) { z1 += dm; z0 += sz; } | |
} | |
} | |
void plotEllipse(int xm, int ym, int a, int b) | |
{ | |
int x = -a, y = 0; /* II. quadrant from bottom left to top right */ | |
long e2 = (long)b*b, err = (long)x*(2*e2+x)+e2; /* error of 1.step */ | |
do { | |
setPixel(xm-x, ym+y); /* I. Quadrant */ | |
setPixel(xm+x, ym+y); /* II. Quadrant */ | |
setPixel(xm+x, ym-y); /* III. Quadrant */ | |
setPixel(xm-x, ym-y); /* IV. Quadrant */ | |
e2 = 2*err; | |
if (e2 >= (x*2+1)*(long)b*b) /* e_xy+e_x > 0 */ | |
err += (++x*2+1)*(long)b*b; | |
if (e2 <= (y*2+1)*(long)a*a) /* e_xy+e_y < 0 */ | |
err += (++y*2+1)*(long)a*a; | |
} while (x <= 0); | |
while (y++ < b) { /* too early stop of flat ellipses a=1, */ | |
setPixel(xm, ym+y); /* -> finish tip of ellipse */ | |
setPixel(xm, ym-y); | |
} | |
} | |
void plotOptimizedEllipse(int xm, int ym, int a, int b) | |
{ | |
long x = -a, y = 0; /* II. quadrant from bottom left to top right */ | |
long e2 = b, dx = (1+2*x)*e2*e2; /* error increment */ | |
long dy = x*x, err = dx+dy; /* error of 1.step */ | |
do { | |
setPixel(xm-x, ym+y); /* I. Quadrant */ | |
setPixel(xm+x, ym+y); /* II. Quadrant */ | |
setPixel(xm+x, ym-y); /* III. Quadrant */ | |
setPixel(xm-x, ym-y); /* IV. Quadrant */ | |
e2 = 2*err; | |
if (e2 >= dx) { x++; err += dx += 2*(long)b*b; } /* x step */ | |
if (e2 <= dy) { y++; err += dy += 2*(long)a*a; } /* y step */ | |
} while (x <= 0); | |
while (y++ < b) { /* too early stop for flat ellipses with a=1, */ | |
setPixel(xm, ym+y); /* -> finish tip of ellipse */ | |
setPixel(xm, ym-y); | |
} | |
} | |
void plotCircle(int xm, int ym, int r) | |
{ | |
int x = -r, y = 0, err = 2-2*r; /* bottom left to top right */ | |
do { | |
setPixel(xm-x, ym+y); /* I. Quadrant +x +y */ | |
setPixel(xm-y, ym-x); /* II. Quadrant -x +y */ | |
setPixel(xm+x, ym-y); /* III. Quadrant -x -y */ | |
setPixel(xm+y, ym+x); /* IV. Quadrant +x -y */ | |
r = err; | |
if (r <= y) err += ++y*2+1; /* e_xy+e_y < 0 */ | |
if (r > x || err > y) /* e_xy+e_x > 0 or no 2nd y-step */ | |
err += ++x*2+1; /* -> x-step now */ | |
} while (x < 0); | |
} | |
void plotEllipseRect(int x0, int y0, int x1, int y1) | |
{ /* rectangular parameter enclosing the ellipse */ | |
long a = abs(x1-x0), b = abs(y1-y0), b1 = b&1; /* diameter */ | |
double dx = 4*(1.0-a)*b*b, dy = 4*(b1+1)*a*a; /* error increment */ | |
double err = dx+dy+b1*a*a, e2; /* error of 1.step */ | |
if (x0 > x1) { x0 = x1; x1 += a; } /* if called with swapped points */ | |
if (y0 > y1) y0 = y1; /* .. exchange them */ | |
y0 += (b+1)/2; y1 = y0-b1; /* starting pixel */ | |
a = 8*a*a; b1 = 8*b*b; | |
do { | |
setPixel(x1, y0); /* I. Quadrant */ | |
setPixel(x0, y0); /* II. Quadrant */ | |
setPixel(x0, y1); /* III. Quadrant */ | |
setPixel(x1, y1); /* IV. Quadrant */ | |
e2 = 2*err; | |
if (e2 <= dy) { y0++; y1--; err += dy += a; } /* y step */ | |
if (e2 >= dx || 2*err > dy) { x0++; x1--; err += dx += b1; } /* x step */ | |
} while (x0 <= x1); | |
while (y0-y1 <= b) { /* too early stop of flat ellipses a=1 */ | |
setPixel(x0-1, y0); /* -> finish tip of ellipse */ | |
setPixel(x1+1, y0++); | |
setPixel(x0-1, y1); | |
setPixel(x1+1, y1--); | |
} | |
} | |
void plotQuadBezierSeg(int x0, int y0, int x1, int y1, int x2, int y2) | |
{ /* plot a limited quadratic Bezier segment */ | |
int sx = x2-x1, sy = y2-y1; | |
long xx = x0-x1, yy = y0-y1, xy; /* relative values for checks */ | |
double dx, dy, err, cur = xx*sy-yy*sx; /* curvature */ | |
assert(xx*sx <= 0 && yy*sy <= 0); /* sign of gradient must not change */ | |
if (sx*(long)sx+sy*(long)sy > xx*xx+yy*yy) { /* begin with longer part */ | |
x2 = x0; x0 = sx+x1; y2 = y0; y0 = sy+y1; cur = -cur; /* swap P0 P2 */ | |
} | |
if (cur != 0) { /* no straight line */ | |
xx += sx; xx *= sx = x0 < x2 ? 1 : -1; /* x step direction */ | |
yy += sy; yy *= sy = y0 < y2 ? 1 : -1; /* y step direction */ | |
xy = 2*xx*yy; xx *= xx; yy *= yy; /* differences 2nd degree */ | |
if (cur*sx*sy < 0) { /* negated curvature? */ | |
xx = -xx; yy = -yy; xy = -xy; cur = -cur; | |
} | |
dx = 4.0*sy*cur*(x1-x0)+xx-xy; /* differences 1st degree */ | |
dy = 4.0*sx*cur*(y0-y1)+yy-xy; | |
xx += xx; yy += yy; err = dx+dy+xy; /* error 1st step */ | |
do { | |
setPixel(x0,y0); /* plot curve */ | |
if (x0 == x2 && y0 == y2) return; /* last pixel -> curve finished */ | |
y1 = 2*err < dx; /* save value for test of y step */ | |
if (2*err > dy) { x0 += sx; dx -= xy; err += dy += yy; } /* x step */ | |
if ( y1 ) { y0 += sy; dy -= xy; err += dx += xx; } /* y step */ | |
} while (dy < 0 && dx > 0); /* gradient negates -> algorithm fails */ | |
} | |
plotLine(x0,y0, x2,y2); /* plot remaining part to end */ | |
} | |
void plotQuadBezier(int x0, int y0, int x1, int y1, int x2, int y2) | |
{ /* plot any quadratic Bezier curve */ | |
int x = x0-x1, y = y0-y1; | |
double t = x0-2*x1+x2, r; | |
if ((long)x*(x2-x1) > 0) { /* horizontal cut at P4? */ | |
if ((long)y*(y2-y1) > 0) /* vertical cut at P6 too? */ | |
if (fabs((y0-2*y1+y2)/t*x) > abs(y)) { /* which first? */ | |
x0 = x2; x2 = x+x1; y0 = y2; y2 = y+y1; /* swap points */ | |
} /* now horizontal cut at P4 comes first */ | |
t = (x0-x1)/t; | |
r = (1-t)*((1-t)*y0+2.0*t*y1)+t*t*y2; /* By(t=P4) */ | |
t = (x0*x2-x1*x1)*t/(x0-x1); /* gradient dP4/dx=0 */ | |
x = floor(t+0.5); y = floor(r+0.5); | |
r = (y1-y0)*(t-x0)/(x1-x0)+y0; /* intersect P3 | P0 P1 */ | |
plotQuadBezierSeg(x0,y0, x,floor(r+0.5), x,y); | |
r = (y1-y2)*(t-x2)/(x1-x2)+y2; /* intersect P4 | P1 P2 */ | |
x0 = x1 = x; y0 = y; y1 = floor(r+0.5); /* P0 = P4, P1 = P8 */ | |
} | |
if ((long)(y0-y1)*(y2-y1) > 0) { /* vertical cut at P6? */ | |
t = y0-2*y1+y2; t = (y0-y1)/t; | |
r = (1-t)*((1-t)*x0+2.0*t*x1)+t*t*x2; /* Bx(t=P6) */ | |
t = (y0*y2-y1*y1)*t/(y0-y1); /* gradient dP6/dy=0 */ | |
x = floor(r+0.5); y = floor(t+0.5); | |
r = (x1-x0)*(t-y0)/(y1-y0)+x0; /* intersect P6 | P0 P1 */ | |
plotQuadBezierSeg(x0,y0, floor(r+0.5),y, x,y); | |
r = (x1-x2)*(t-y2)/(y1-y2)+x2; /* intersect P7 | P1 P2 */ | |
x0 = x; x1 = floor(r+0.5); y0 = y1 = y; /* P0 = P6, P1 = P7 */ | |
} | |
plotQuadBezierSeg(x0,y0, x1,y1, x2,y2); /* remaining part */ | |
} | |
void plotQuadRationalBezierSeg(int x0, int y0, int x1, int y1, | |
int x2, int y2, float w) | |
{ /* plot a limited rational Bezier segment, squared weight */ | |
int sx = x2-x1, sy = y2-y1; /* relative values for checks */ | |
double dx = x0-x2, dy = y0-y2, xx = x0-x1, yy = y0-y1; | |
double xy = xx*sy+yy*sx, cur = xx*sy-yy*sx, err; /* curvature */ | |
assert(xx*sx <= 0.0 && yy*sy <= 0.0); /* sign of gradient must not change */ | |
if (cur != 0.0 && w > 0.0) { /* no straight line */ | |
if (sx*(long)sx+sy*(long)sy > xx*xx+yy*yy) { /* begin with longer part */ | |
x2 = x0; x0 -= dx; y2 = y0; y0 -= dy; cur = -cur; /* swap P0 P2 */ | |
} | |
xx = 2.0*(4.0*w*sx*xx+dx*dx); /* differences 2nd degree */ | |
yy = 2.0*(4.0*w*sy*yy+dy*dy); | |
sx = x0 < x2 ? 1 : -1; /* x step direction */ | |
sy = y0 < y2 ? 1 : -1; /* y step direction */ | |
xy = -2.0*sx*sy*(2.0*w*xy+dx*dy); | |
if (cur*sx*sy < 0.0) { /* negated curvature? */ | |
xx = -xx; yy = -yy; xy = -xy; cur = -cur; | |
} | |
dx = 4.0*w*(x1-x0)*sy*cur+xx/2.0+xy; /* differences 1st degree */ | |
dy = 4.0*w*(y0-y1)*sx*cur+yy/2.0+xy; | |
if (w < 0.5 && (dy > xy || dx < xy)) { /* flat ellipse, algorithm fails */ | |
cur = (w+1.0)/2.0; w = sqrt(w); xy = 1.0/(w+1.0); | |
sx = floor((x0+2.0*w*x1+x2)*xy/2.0+0.5); /* subdivide curve in half */ | |
sy = floor((y0+2.0*w*y1+y2)*xy/2.0+0.5); | |
dx = floor((w*x1+x0)*xy+0.5); dy = floor((y1*w+y0)*xy+0.5); | |
plotQuadRationalBezierSeg(x0,y0, dx,dy, sx,sy, cur);/* plot separately */ | |
dx = floor((w*x1+x2)*xy+0.5); dy = floor((y1*w+y2)*xy+0.5); | |
plotQuadRationalBezierSeg(sx,sy, dx,dy, x2,y2, cur); | |
return; | |
} | |
err = dx+dy-xy; /* error 1.step */ | |
do { | |
setPixel(x0,y0); /* plot curve */ | |
if (x0 == x2 && y0 == y2) return; /* last pixel -> curve finished */ | |
x1 = 2*err > dy; y1 = 2*(err+yy) < -dy;/* save value for test of x step */ | |
if (2*err < dx || y1) { y0 += sy; dy += xy; err += dx += xx; }/* y step */ | |
if (2*err > dx || x1) { x0 += sx; dx += xy; err += dy += yy; }/* x step */ | |
} while (dy <= xy && dx >= xy); /* gradient negates -> algorithm fails */ | |
} | |
plotLine(x0,y0, x2,y2); /* plot remaining needle to end */ | |
} | |
void plotQuadRationalBezier(int x0, int y0, int x1, int y1, | |
int x2, int y2, float w) | |
{ /* plot any quadratic rational Bezier curve */ | |
int x = x0-2*x1+x2, y = y0-2*y1+y2; | |
double xx = x0-x1, yy = y0-y1, ww, t, q; | |
assert(w >= 0.0); | |
if (xx*(x2-x1) > 0) { /* horizontal cut at P4? */ | |
if (yy*(y2-y1) > 0) /* vertical cut at P6 too? */ | |
if (fabs(xx*y) > fabs(yy*x)) { /* which first? */ | |
x0 = x2; x2 = xx+x1; y0 = y2; y2 = yy+y1; /* swap points */ | |
} /* now horizontal cut at P4 comes first */ | |
if (x0 == x2 || w == 1.0) t = (x0-x1)/(double)x; | |
else { /* non-rational or rational case */ | |
q = sqrt(4.0*w*w*(x0-x1)*(x2-x1)+(x2-x0)*(long)(x2-x0)); | |
if (x1 < x0) q = -q; | |
t = (2.0*w*(x0-x1)-x0+x2+q)/(2.0*(1.0-w)*(x2-x0)); /* t at P4 */ | |
} | |
q = 1.0/(2.0*t*(1.0-t)*(w-1.0)+1.0); /* sub-divide at t */ | |
xx = (t*t*(x0-2.0*w*x1+x2)+2.0*t*(w*x1-x0)+x0)*q; /* = P4 */ | |
yy = (t*t*(y0-2.0*w*y1+y2)+2.0*t*(w*y1-y0)+y0)*q; | |
ww = t*(w-1.0)+1.0; ww *= ww*q; /* squared weight P3 */ | |
w = ((1.0-t)*(w-1.0)+1.0)*sqrt(q); /* weight P8 */ | |
x = floor(xx+0.5); y = floor(yy+0.5); /* P4 */ | |
yy = (xx-x0)*(y1-y0)/(x1-x0)+y0; /* intersect P3 | P0 P1 */ | |
plotQuadRationalBezierSeg(x0,y0, x,floor(yy+0.5), x,y, ww); | |
yy = (xx-x2)*(y1-y2)/(x1-x2)+y2; /* intersect P4 | P1 P2 */ | |
y1 = floor(yy+0.5); x0 = x1 = x; y0 = y; /* P0 = P4, P1 = P8 */ | |
} | |
if ((y0-y1)*(long)(y2-y1) > 0) { /* vertical cut at P6? */ | |
if (y0 == y2 || w == 1.0) t = (y0-y1)/(y0-2.0*y1+y2); | |
else { /* non-rational or rational case */ | |
q = sqrt(4.0*w*w*(y0-y1)*(y2-y1)+(y2-y0)*(long)(y2-y0)); | |
if (y1 < y0) q = -q; | |
t = (2.0*w*(y0-y1)-y0+y2+q)/(2.0*(1.0-w)*(y2-y0)); /* t at P6 */ | |
} | |
q = 1.0/(2.0*t*(1.0-t)*(w-1.0)+1.0); /* sub-divide at t */ | |
xx = (t*t*(x0-2.0*w*x1+x2)+2.0*t*(w*x1-x0)+x0)*q; /* = P6 */ | |
yy = (t*t*(y0-2.0*w*y1+y2)+2.0*t*(w*y1-y0)+y0)*q; | |
ww = t*(w-1.0)+1.0; ww *= ww*q; /* squared weight P5 */ | |
w = ((1.0-t)*(w-1.0)+1.0)*sqrt(q); /* weight P7 */ | |
x = floor(xx+0.5); y = floor(yy+0.5); /* P6 */ | |
xx = (x1-x0)*(yy-y0)/(y1-y0)+x0; /* intersect P6 | P0 P1 */ | |
plotQuadRationalBezierSeg(x0,y0, floor(xx+0.5),y, x,y, ww); | |
xx = (x1-x2)*(yy-y2)/(y1-y2)+x2; /* intersect P7 | P1 P2 */ | |
x1 = floor(xx+0.5); x0 = x; y0 = y1 = y; /* P0 = P6, P1 = P7 */ | |
} | |
plotQuadRationalBezierSeg(x0,y0, x1,y1, x2,y2, w*w); /* remaining */ | |
} | |
void plotRotatedEllipse(int x, int y, int a, int b, float angle) | |
{ /* plot ellipse rotated by angle (radian) */ | |
float xd = (long)a*a, yd = (long)b*b; | |
float s = sin(angle), zd = (xd-yd)*s; /* ellipse rotation */ | |
xd = sqrt(xd-zd*s), yd = sqrt(yd+zd*s); /* surrounding rectangle */ | |
a = xd+0.5; b = yd+0.5; zd = zd*a*b/(xd*yd); /* scale to integer */ | |
plotRotatedEllipseRect(x-a,y-b, x+a,y+b, (long)(4*zd*cos(angle))); | |
} | |
void plotRotatedEllipseRect(int x0, int y0, int x1, int y1, long zd) | |
{ /* rectangle enclosing the ellipse, integer rotation angle */ | |
int xd = x1-x0, yd = y1-y0; | |
float w = xd*(long)yd; | |
if (zd == 0) return plotEllipseRect(x0,y0, x1,y1); /* looks nicer */ | |
if (w != 0.0) w = (w-zd)/(w+w); /* squared weight of P1 */ | |
assert(w <= 1.0 && w >= 0.0); /* limit angle to |zd|<=xd*yd */ | |
xd = floor(xd*w+0.5); yd = floor(yd*w+0.5); /* snap xe,ye to int */ | |
plotQuadRationalBezierSeg(x0,y0+yd, x0,y0, x0+xd,y0, 1.0-w); | |
plotQuadRationalBezierSeg(x0,y0+yd, x0,y1, x1-xd,y1, w); | |
plotQuadRationalBezierSeg(x1,y1-yd, x1,y1, x1-xd,y1, 1.0-w); | |
plotQuadRationalBezierSeg(x1,y1-yd, x1,y0, x0+xd,y0, w); | |
} | |
void plotCubicBezierSeg(int x0, int y0, float x1, float y1, | |
float x2, float y2, int x3, int y3) | |
{ /* plot limited cubic Bezier segment */ | |
int f, fx, fy, leg = 1; | |
int sx = x0 < x3 ? 1 : -1, sy = y0 < y3 ? 1 : -1; /* step direction */ | |
float xc = -fabs(x0+x1-x2-x3), xa = xc-4*sx*(x1-x2), xb = sx*(x0-x1-x2+x3); | |
float yc = -fabs(y0+y1-y2-y3), ya = yc-4*sy*(y1-y2), yb = sy*(y0-y1-y2+y3); | |
double ab, ac, bc, cb, xx, xy, yy, dx, dy, ex, *pxy, EP = 0.01; | |
/* check for curve restrains */ | |
/* slope P0-P1 == P2-P3 and (P0-P3 == P1-P2 or no slope change) */ | |
assert((x1-x0)*(x2-x3) < EP && ((x3-x0)*(x1-x2) < EP || xb*xb < xa*xc+EP)); | |
assert((y1-y0)*(y2-y3) < EP && ((y3-y0)*(y1-y2) < EP || yb*yb < ya*yc+EP)); | |
if (xa == 0 && ya == 0) { /* quadratic Bezier */ | |
sx = floor((3*x1-x0+1)/2); sy = floor((3*y1-y0+1)/2); /* new midpoint */ | |
return plotQuadBezierSeg(x0,y0, sx,sy, x3,y3); | |
} | |
x1 = (x1-x0)*(x1-x0)+(y1-y0)*(y1-y0)+1; /* line lengths */ | |
x2 = (x2-x3)*(x2-x3)+(y2-y3)*(y2-y3)+1; | |
do { /* loop over both ends */ | |
ab = xa*yb-xb*ya; ac = xa*yc-xc*ya; bc = xb*yc-xc*yb; | |
ex = ab*(ab+ac-3*bc)+ac*ac; /* P0 part of self-intersection loop? */ | |
f = ex > 0 ? 1 : sqrt(1+1024/x1); /* calculate resolution */ | |
ab *= f; ac *= f; bc *= f; ex *= f*f; /* increase resolution */ | |
xy = 9*(ab+ac+bc)/8; cb = 8*(xa-ya); /* init differences of 1st degree */ | |
dx = 27*(8*ab*(yb*yb-ya*yc)+ex*(ya+2*yb+yc))/64-ya*ya*(xy-ya); | |
dy = 27*(8*ab*(xb*xb-xa*xc)-ex*(xa+2*xb+xc))/64-xa*xa*(xy+xa); | |
/* init differences of 2nd degree */ | |
xx = 3*(3*ab*(3*yb*yb-ya*ya-2*ya*yc)-ya*(3*ac*(ya+yb)+ya*cb))/4; | |
yy = 3*(3*ab*(3*xb*xb-xa*xa-2*xa*xc)-xa*(3*ac*(xa+xb)+xa*cb))/4; | |
xy = xa*ya*(6*ab+6*ac-3*bc+cb); ac = ya*ya; cb = xa*xa; | |
xy = 3*(xy+9*f*(cb*yb*yc-xb*xc*ac)-18*xb*yb*ab)/8; | |
if (ex < 0) { /* negate values if inside self-intersection loop */ | |
dx = -dx; dy = -dy; xx = -xx; yy = -yy; xy = -xy; ac = -ac; cb = -cb; | |
} /* init differences of 3rd degree */ | |
ab = 6*ya*ac; ac = -6*xa*ac; bc = 6*ya*cb; cb = -6*xa*cb; | |
dx += xy; ex = dx+dy; dy += xy; /* error of 1st step */ | |
for (pxy = &xy, fx = fy = f; x0 != x3 && y0 != y3; ) { | |
setPixel(x0,y0); /* plot curve */ | |
do { /* move sub-steps of one pixel */ | |
if (dx > *pxy || dy < *pxy) goto exit; /* confusing values */ | |
y1 = 2*ex-dy; /* save value for test of y step */ | |
if (2*ex >= dx) { /* x sub-step */ | |
fx--; ex += dx += xx; dy += xy += ac; yy += bc; xx += ab; | |
} | |
if (y1 <= 0) { /* y sub-step */ | |
fy--; ex += dy += yy; dx += xy += bc; xx += ac; yy += cb; | |
} | |
} while (fx > 0 && fy > 0); /* pixel complete? */ | |
if (2*fx <= f) { x0 += sx; fx += f; } /* x step */ | |
if (2*fy <= f) { y0 += sy; fy += f; } /* y step */ | |
if (pxy == &xy && dx < 0 && dy > 0) pxy = &EP; /* pixel ahead valid */ | |
} | |
exit: xx = x0; x0 = x3; x3 = xx; sx = -sx; xb = -xb; /* swap legs */ | |
yy = y0; y0 = y3; y3 = yy; sy = -sy; yb = -yb; x1 = x2; | |
} while (leg--); /* try other end */ | |
plotLine(x0,y0, x3,y3); /* remaining part in case of cusp or crunode */ | |
} | |
void plotCubicBezier(int x0, int y0, int x1, int y1, | |
int x2, int y2, int x3, int y3) | |
{ /* plot any cubic Bezier curve */ | |
int n = 0, i = 0; | |
long xc = x0+x1-x2-x3, xa = xc-4*(x1-x2); | |
long xb = x0-x1-x2+x3, xd = xb+4*(x1+x2); | |
long yc = y0+y1-y2-y3, ya = yc-4*(y1-y2); | |
long yb = y0-y1-y2+y3, yd = yb+4*(y1+y2); | |
float fx0 = x0, fx1, fx2, fx3, fy0 = y0, fy1, fy2, fy3; | |
double t1 = xb*xb-xa*xc, t2, t[5]; | |
/* sub-divide curve at gradient sign changes */ | |
if (xa == 0) { /* horizontal */ | |
if (abs(xc) < 2*abs(xb)) t[n++] = xc/(2.0*xb); /* one change */ | |
} else if (t1 > 0.0) { /* two changes */ | |
t2 = sqrt(t1); | |
t1 = (xb-t2)/xa; if (fabs(t1) < 1.0) t[n++] = t1; | |
t1 = (xb+t2)/xa; if (fabs(t1) < 1.0) t[n++] = t1; | |
} | |
t1 = yb*yb-ya*yc; | |
if (ya == 0) { /* vertical */ | |
if (abs(yc) < 2*abs(yb)) t[n++] = yc/(2.0*yb); /* one change */ | |
} else if (t1 > 0.0) { /* two changes */ | |
t2 = sqrt(t1); | |
t1 = (yb-t2)/ya; if (fabs(t1) < 1.0) t[n++] = t1; | |
t1 = (yb+t2)/ya; if (fabs(t1) < 1.0) t[n++] = t1; | |
} | |
for (i = 1; i < n; i++) /* bubble sort of 4 points */ | |
if ((t1 = t[i-1]) > t[i]) { t[i-1] = t[i]; t[i] = t1; i = 0; } | |
t1 = -1.0; t[n] = 1.0; /* begin / end point */ | |
for (i = 0; i <= n; i++) { /* plot each segment separately */ | |
t2 = t[i]; /* sub-divide at t[i-1], t[i] */ | |
fx1 = (t1*(t1*xb-2*xc)-t2*(t1*(t1*xa-2*xb)+xc)+xd)/8-fx0; | |
fy1 = (t1*(t1*yb-2*yc)-t2*(t1*(t1*ya-2*yb)+yc)+yd)/8-fy0; | |
fx2 = (t2*(t2*xb-2*xc)-t1*(t2*(t2*xa-2*xb)+xc)+xd)/8-fx0; | |
fy2 = (t2*(t2*yb-2*yc)-t1*(t2*(t2*ya-2*yb)+yc)+yd)/8-fy0; | |
fx0 -= fx3 = (t2*(t2*(3*xb-t2*xa)-3*xc)+xd)/8; | |
fy0 -= fy3 = (t2*(t2*(3*yb-t2*ya)-3*yc)+yd)/8; | |
x3 = floor(fx3+0.5); y3 = floor(fy3+0.5); /* scale bounds to int */ | |
if (fx0 != 0.0) { fx1 *= fx0 = (x0-x3)/fx0; fx2 *= fx0; } | |
if (fy0 != 0.0) { fy1 *= fy0 = (y0-y3)/fy0; fy2 *= fy0; } | |
if (x0 != x3 || y0 != y3) /* segment t1 - t2 */ | |
plotCubicBezierSeg(x0,y0, x0+fx1,y0+fy1, x0+fx2,y0+fy2, x3,y3); | |
x0 = x3; y0 = y3; fx0 = fx3; fy0 = fy3; t1 = t2; | |
} | |
} | |
void plotLineAA(int x0, int y0, int x1, int y1) | |
{ /* draw a black (0) anti-aliased line on white (255) background */ | |
int sx = x0 < x1 ? 1 : -1, sy = y0 < y1 ? 1 : -1, x2; | |
long dx = abs(x1-x0), dy = abs(y1-y0), err = dx*dx+dy*dy; | |
long e2 = err == 0 ? 1 : 0xffff7fl/sqrt(err); /* multiplication factor */ | |
dx *= e2; dy *= e2; err = dx-dy; /* error value e_xy */ | |
for ( ; ; ){ /* pixel loop */ | |
setPixelAA(x0,y0,abs(err-dx+dy)>>16); | |
e2 = err; x2 = x0; | |
if (2*e2 >= -dx) { /* x step */ | |
if (x0 == x1) break; | |
if (e2+dy < 0xff0000l) setPixelAA(x0,y0+sy,(e2+dy)>>16); | |
err -= dy; x0 += sx; | |
} | |
if (2*e2 <= dy) { /* y step */ | |
if (y0 == y1) break; | |
if (dx-e2 < 0xff0000l) setPixelAA(x2+sx,y0,(dx-e2)>>16); | |
err += dx; y0 += sy; | |
} | |
} | |
void plotCircleAA(int xm, int ym, int r) | |
{ /* draw a black anti-aliased circle on white background */ | |
int x = -r, y = 0; /* II. quadrant from bottom left to top right */ | |
int i, x2, e2, err = 2-2*r; /* error of 1.step */ | |
r = 1-err; | |
do { | |
i = 255*abs(err-2*(x+y)-2)/r; /* get blend value of pixel */ | |
setPixelAA(xm-x, ym+y, i); /* I. Quadrant */ | |
setPixelAA(xm-y, ym-x, i); /* II. Quadrant */ | |
setPixelAA(xm+x, ym-y, i); /* III. Quadrant */ | |
setPixelAA(xm+y, ym+x, i); /* IV. Quadrant */ | |
e2 = err; x2 = x; /* remember values */ | |
if (err+y > 0) { /* x step */ | |
i = 255*(err-2*x-1)/r; /* outward pixel */ | |
if (i < 256) { | |
setPixelAA(xm-x, ym+y+1, i); | |
setPixelAA(xm-y-1, ym-x, i); | |
setPixelAA(xm+x, ym-y-1, i); | |
setPixelAA(xm+y+1, ym+x, i); | |
} | |
err += ++x*2+1; | |
} | |
if (e2+x2 <= 0) { /* y step */ | |
i = 255*(2*y+3-e2)/r; /* inward pixel */ | |
if (i < 256) { | |
setPixelAA(xm-x2-1, ym+y, i); | |
setPixelAA(xm-y, ym-x2-1, i); | |
setPixelAA(xm+x2+1, ym-y, i); | |
setPixelAA(xm+y, ym+x2+1, i); | |
} | |
err += ++y*2+1; | |
} | |
} while (x < 0); | |
} | |
void plotEllipseRectAA(int x0, int y0, int x1, int y1) | |
{ /* draw a black anti-aliased rectangular ellipse on white background */ | |
long a = abs(x1-x0), b = abs(y1-y0), b1 = b&1; /* diameter */ | |
float dx = 4*(a-1.0)*b*b, dy = 4*(b1+1)*a*a; /* error increment */ | |
float ed, i, err = b1*a*a-dx+dy; /* error of 1.step */ | |
bool f; | |
if (a == 0 || b == 0) return plotLine(x0,y0, x1,y1); | |
if (x0 > x1) { x0 = x1; x1 += a; } /* if called with swapped points */ | |
if (y0 > y1) y0 = y1; /* .. exchange them */ | |
y0 += (b+1)/2; y1 = y0-b1; /* starting pixel */ | |
a = 8*a*a; b1 = 8*b*b; | |
for (;;) { /* approximate ed=sqrt(dx*dx+dy*dy) */ | |
i = min(dx,dy); ed = max(dx,dy); | |
if (y0 == y1+1 && err > dy && a > b1) ed = 255*4./a; /* x-tip */ | |
else ed = 255/(ed+2*ed*i*i/(4*ed*ed+i*i)); /* approximation */ | |
i = ed*fabs(err+dx-dy); /* get intensity value by pixel error */ | |
setPixelAA(x0,y0, i); setPixelAA(x0,y1, i); | |
setPixelAA(x1,y0, i); setPixelAA(x1,y1, i); | |
if (f = 2*err+dy >= 0) { /* x step, remember condition */ | |
if (x0 >= x1) break; | |
i = ed*(err+dx); | |
if (i < 255) { | |
setPixelAA(x0,y0+1, i); setPixelAA(x0,y1-1, i); | |
setPixelAA(x1,y0+1, i); setPixelAA(x1,y1-1, i); | |
} /* do error increment later since values are still needed */ | |
} | |
if (2*err <= dx) { /* y step */ | |
i = ed*(dy-err); | |
if (i < 255) { | |
setPixelAA(x0+1,y0, i); setPixelAA(x1-1,y0, i); | |
setPixelAA(x0+1,y1, i); setPixelAA(x1-1,y1, i); | |
} | |
y0++; y1--; err += dy += a; | |
} | |
if (f) { x0++; x1--; err -= dx -= b1; } /* x error increment */ | |
} | |
if (--x0 == x1++) /* too early stop of flat ellipses */ | |
while (y0-y1 < b) { | |
i = 255*4*fabs(err+dx)/b1; /* -> finish tip of ellipse */ | |
setPixelAA(x0,++y0, i); setPixelAA(x1,y0, i); | |
setPixelAA(x0,--y1, i); setPixelAA(x1,y1, i); | |
err += dy += a; | |
} | |
} | |
void plotQuadBezierSegAA(int x0, int y0, int x1, int y1, int x2, int y2) | |
{ /* draw an limited anti-aliased quadratic Bezier segment */ | |
int sx = x2-x1, sy = y2-y1; | |
long xx = x0-x1, yy = y0-y1, xy; /* relative values for checks */ | |
double dx, dy, err, ed, cur = xx*sy-yy*sx; /* curvature */ | |
assert(xx*sx <= 0 && yy*sy <= 0); /* sign of gradient must not change */ | |
if (sx*(long)sx+sy*(long)sy > xx*xx+yy*yy) { /* begin with longer part */ | |
x2 = x0; x0 = sx+x1; y2 = y0; y0 = sy+y1; cur = -cur; /* swap P0 P2 */ | |
} | |
if (cur != 0) | |
{ /* no straight line */ | |
xx += sx; xx *= sx = x0 < x2 ? 1 : -1; /* x step direction */ | |
yy += sy; yy *= sy = y0 < y2 ? 1 : -1; /* y step direction */ | |
xy = 2*xx*yy; xx *= xx; yy *= yy; /* differences 2nd degree */ | |
if (cur*sx*sy < 0) { /* negated curvature? */ | |
xx = -xx; yy = -yy; xy = -xy; cur = -cur; | |
} | |
dx = 4.0*sy*(x1-x0)*cur+xx-xy; /* differences 1st degree */ | |
dy = 4.0*sx*(y0-y1)*cur+yy-xy; | |
xx += xx; yy += yy; err = dx+dy+xy; /* error 1st step */ | |
do { | |
cur = fmin(dx+xy,-xy-dy); | |
ed = fmax(dx+xy,-xy-dy); /* approximate error distance */ | |
ed += 2*ed*cur*cur/(4*ed*ed+cur*cur); | |
setPixelAA(x0,y0, 255*fabs(err-dx-dy-xy)/ed); /* plot curve */ | |
if (x0 == x2 || y0 == y2) break; /* last pixel -> curve finished */ | |
x1 = x0; cur = dx-err; y1 = 2*err+dy < 0; | |
if (2*err+dx > 0) { /* x step */ | |
if (err-dy < ed) setPixelAA(x0,y0+sy, 255*fabs(err-dy)/ed); | |
x0 += sx; dx -= xy; err += dy += yy; | |
} | |
if (y1) { /* y step */ | |
if (cur < ed) setPixelAA(x1+sx,y0, 255*fabs(cur)/ed); | |
y0 += sy; dy -= xy; err += dx += xx; | |
} | |
} while (dy < dx); /* gradient negates -> close curves */ | |
} | |
plotLineAA(x0,y0, x2,y2); /* plot remaining needle to end */ | |
} | |
void plotQuadRationalBezierSegAA(int x0, int y0, int x1, int y1, | |
int x2, int y2, float w) | |
{ /* draw an anti-aliased rational quadratic Bezier segment, squared weight */ | |
int sx = x2-x1, sy = y2-y1; /* relative values for checks */ | |
double dx = x0-x2, dy = y0-y2, xx = x0-x1, yy = y0-y1; | |
double xy = xx*sy+yy*sx, cur = xx*sy-yy*sx, err, ed; /* curvature */ | |
bool f; | |
assert(xx*sx <= 0.0 && yy*sy <= 0.0); /* sign of gradient must not change */ | |
if (cur != 0.0 && w > 0.0) { /* no straight line */ | |
if (sx*(long)sx+sy*(long)sy > xx*xx+yy*yy) { /* begin with longer part */ | |
x2 = x0; x0 -= dx; y2 = y0; y0 -= dy; cur = -cur; /* swap P0 P2 */ | |
} | |
xx = 2.0*(4.0*w*sx*xx+dx*dx); /* differences 2nd degree */ | |
yy = 2.0*(4.0*w*sy*yy+dy*dy); | |
sx = x0 < x2 ? 1 : -1; /* x step direction */ | |
sy = y0 < y2 ? 1 : -1; /* y step direction */ | |
xy = -2.0*sx*sy*(2.0*w*xy+dx*dy); | |
if (cur*sx*sy < 0) { /* negated curvature? */ | |
xx = -xx; yy = -yy; cur = -cur; xy = -xy; | |
} | |
dx = 4.0*w*(x1-x0)*sy*cur+xx/2.0+xy; /* differences 1st degree */ | |
dy = 4.0*w*(y0-y1)*sx*cur+yy/2.0+xy; | |
if (w < 0.5 && dy > dx) { /* flat ellipse, algorithm fails */ | |
cur = (w+1.0)/2.0; w = sqrt(w); xy = 1.0/(w+1.0); | |
sx = floor((x0+2.0*w*x1+x2)*xy/2.0+0.5); /* subdivide curve in half */ | |
sy = floor((y0+2.0*w*y1+y2)*xy/2.0+0.5); | |
dx = floor((w*x1+x0)*xy+0.5); dy = floor((y1*w+y0)*xy+0.5); | |
plotQuadRationalBezierSegAA(x0,y0, dx,dy, sx,sy, cur); /* plot apart */ | |
dx = floor((w*x1+x2)*xy+0.5); dy = floor((y1*w+y2)*xy+0.5); | |
return plotQuadRationalBezierSegAA(sx,sy, dx,dy, x2,y2, cur); | |
} | |
err = dx+dy-xy; /* error 1st step */ | |
do { /* pixel loop */ | |
cur = fmin(dx-xy,xy-dy); ed = fmax(dx-xy,xy-dy); | |
ed += 2*ed*cur*cur/(4.*ed*ed+cur*cur); /* approximate error distance */ | |
x1 = 255*fabs(err-dx-dy+xy)/ed; /* get blend value by pixel error */ | |
if (x1 < 256) setPixelAA(x0,y0, x1); /* plot curve */ | |
if (f = 2*err+dy < 0) { /* y step */ | |
if (y0 == y2) return; /* last pixel -> curve finished */ | |
if (dx-err < ed) setPixelAA(x0+sx,y0, 255*fabs(dx-err)/ed); | |
} | |
if (2*err+dx > 0) { /* x step */ | |
if (x0 == x2) return; /* last pixel -> curve finished */ | |
if (err-dy < ed) setPixelAA(x0,y0+sy, 255*fabs(err-dy)/ed); | |
x0 += sx; dx += xy; err += dy += yy; | |
} | |
if (f) { y0 += sy; dy += xy; err += dx += xx; } /* y step */ | |
} while (dy < dx); /* gradient negates -> algorithm fails */ | |
} | |
plotLineAA(x0,y0, x2,y2); /* plot remaining needle to end */ | |
} | |
void plotCubicBezierSegAA(int x0, int y0, float x1, float y1, | |
float x2, float y2, int x3, int y3) | |
{ /* plot limited anti-aliased cubic Bezier segment */ | |
int f, fx, fy, leg = 1; | |
int sx = x0 < x3 ? 1 : -1, sy = y0 < y3 ? 1 : -1; /* step direction */ | |
float xc = -fabs(x0+x1-x2-x3), xa = xc-4*sx*(x1-x2), xb = sx*(x0-x1-x2+x3); | |
float yc = -fabs(y0+y1-y2-y3), ya = yc-4*sy*(y1-y2), yb = sy*(y0-y1-y2+y3); | |
double ab, ac, bc, ba, xx, xy, yy, dx, dy, ex, px, py, ed, ip, EP = 0.01; | |
/* check for curve restrains */ | |
/* slope P0-P1 == P2-P3 and (P0-P3 == P1-P2 or no slope change) */ | |
assert((x1-x0)*(x2-x3) < EP && ((x3-x0)*(x1-x2) < EP || xb*xb < xa*xc+EP)); | |
assert((y1-y0)*(y2-y3) < EP && ((y3-y0)*(y1-y2) < EP || yb*yb < ya*yc+EP)); | |
if (xa == 0 && ya == 0) { /* quadratic Bezier */ | |
sx = floor((3*x1-x0+1)/2); sy = floor((3*y1-y0+1)/2); /* new midpoint */ | |
return plotQuadBezierSegAA(x0,y0, sx,sy, x3,y3); | |
} | |
x1 = (x1-x0)*(x1-x0)+(y1-y0)*(y1-y0)+1; /* line lengths */ | |
x2 = (x2-x3)*(x2-x3)+(y2-y3)*(y2-y3)+1; | |
do { /* loop over both ends */ | |
ab = xa*yb-xb*ya; ac = xa*yc-xc*ya; bc = xb*yc-xc*yb; | |
ip = 4*ab*bc-ac*ac; /* self intersection loop at all? */ | |
ex = ab*(ab+ac-3*bc)+ac*ac; /* P0 part of self-intersection loop? */ | |
f = ex > 0 ? 1 : sqrt(1+1024/x1); /* calculate resolution */ | |
ab *= f; ac *= f; bc *= f; ex *= f*f; /* increase resolution */ | |
xy = 9*(ab+ac+bc)/8; ba = 8*(xa-ya); /* init differences of 1st degree */ | |
dx = 27*(8*ab*(yb*yb-ya*yc)+ex*(ya+2*yb+yc))/64-ya*ya*(xy-ya); | |
dy = 27*(8*ab*(xb*xb-xa*xc)-ex*(xa+2*xb+xc))/64-xa*xa*(xy+xa); | |
/* init differences of 2nd degree */ | |
xx = 3*(3*ab*(3*yb*yb-ya*ya-2*ya*yc)-ya*(3*ac*(ya+yb)+ya*ba))/4; | |
yy = 3*(3*ab*(3*xb*xb-xa*xa-2*xa*xc)-xa*(3*ac*(xa+xb)+xa*ba))/4; | |
xy = xa*ya*(6*ab+6*ac-3*bc+ba); ac = ya*ya; ba = xa*xa; | |
xy = 3*(xy+9*f*(ba*yb*yc-xb*xc*ac)-18*xb*yb*ab)/8; | |
if (ex < 0) { /* negate values if inside self-intersection loop */ | |
dx = -dx; dy = -dy; xx = -xx; yy = -yy; xy = -xy; ac = -ac; ba = -ba; | |
} /* init differences of 3rd degree */ | |
ab = 6*ya*ac; ac = -6*xa*ac; bc = 6*ya*ba; ba = -6*xa*ba; | |
dx += xy; ex = dx+dy; dy += xy; /* error of 1st step */ | |
for (fx = fy = f; x0 != x3 && y0 != y3; ) { | |
y1 = fmin(fabs(xy-dx),fabs(dy-xy)); | |
ed = fmax(fabs(xy-dx),fabs(dy-xy)); /* approximate error distance */ | |
ed = f*(ed+2*ed*y1*y1/(4*ed*ed+y1*y1)); | |
y1 = 255*fabs(ex-(f-fx+1)*dx-(f-fy+1)*dy+f*xy)/ed; | |
if (y1 < 256) setPixelAA(x0, y0, y1); /* plot curve */ | |
px = fabs(ex-(f-fx+1)*dx+(fy-1)*dy); /* pixel intensity x move */ | |
py = fabs(ex+(fx-1)*dx-(f-fy+1)*dy); /* pixel intensity y move */ | |
y2 = y0; | |
do { /* move sub-steps of one pixel */ | |
if (ip >= -EP) /* intersection possible? -> check.. */ | |
if (dx+xx > xy || dy+yy < xy) goto exit; /* two x or y steps */ | |
y1 = 2*ex+dx; /* save value for test of y step */ | |
if (2*ex+dy > 0) { /* x sub-step */ | |
fx--; ex += dx += xx; dy += xy += ac; yy += bc; xx += ab; | |
} else if (y1 > 0) goto exit; /* tiny nearly cusp */ | |
if (y1 <= 0) { /* y sub-step */ | |
fy--; ex += dy += yy; dx += xy += bc; xx += ac; yy += ba; | |
} | |
} while (fx > 0 && fy > 0); /* pixel complete? */ | |
if (2*fy <= f) { /* x+ anti-aliasing pixel */ | |
if (py < ed) setPixelAA(x0+sx, y0, 255*py/ed); /* plot curve */ | |
y0 += sy; fy += f; /* y step */ | |
} | |
if (2*fx <= f) { /* y+ anti-aliasing pixel */ | |
if (px < ed) setPixelAA(x0, y2+sy, 255*px/ed); /* plot curve */ | |
x0 += sx; fx += f; /* x step */ | |
} | |
} | |
break; /* finish curve by line */ | |
exit: | |
if (2*ex < dy && 2*fy <= f+2) { /* round x+ approximation pixel */ | |
if (py < ed) setPixelAA(x0+sx, y0, 255*py/ed); /* plot curve */ | |
y0 += sy; | |
} | |
if (2*ex > dx && 2*fx <= f+2) { /* round y+ approximation pixel */ | |
if (px < ed) setPixelAA(x0, y2+sy, 255*px/ed); /* plot curve */ | |
x0 += sx; | |
} | |
xx = x0; x0 = x3; x3 = xx; sx = -sx; xb = -xb; /* swap legs */ | |
yy = y0; y0 = y3; y3 = yy; sy = -sy; yb = -yb; x1 = x2; | |
} while (leg--); /* try other end */ | |
plotLineAA(x0,y0, x3,y3); /* remaining part in case of cusp or crunode */ | |
} | |
void plotLineWidth(int x0, int y0, int x1, int y1, float wd) | |
{ /* plot an anti-aliased line of width wd */ | |
int dx = abs(x1-x0), sx = x0 < x1 ? 1 : -1; | |
int dy = abs(y1-y0), sy = y0 < y1 ? 1 : -1; | |
int err = dx-dy, e2, x2, y2; /* error value e_xy */ | |
float ed = dx+dy == 0 ? 1 : sqrt((float)dx*dx+(float)dy*dy); | |
for (wd = (wd+1)/2; ; ) { /* pixel loop */ | |
setPixelColor(x0, y0, max(0,255*(abs(err-dx+dy)/ed-wd+1))); | |
e2 = err; x2 = x0; | |
if (2*e2 >= -dx) { /* x step */ | |
for (e2 += dy, y2 = y0; e2 < ed*wd && (y1 != y2 || dx > dy); e2 += dx) | |
setPixelColor(x0, y2 += sy, max(0,255*(abs(e2)/ed-wd+1))); | |
if (x0 == x1) break; | |
e2 = err; err -= dy; x0 += sx; | |
} | |
if (2*e2 <= dy) { /* y step */ | |
for (e2 = dx-e2; e2 < ed*wd && (x1 != x2 || dx < dy); e2 += dy) | |
setPixelColor(x2 += sx, y0, max(0,255*(abs(e2)/ed-wd+1))); | |
if (y0 == y1) break; | |
err += dx; y0 += sy; | |
} | |
} | |
} | |
void plotQuadSpline(int n, int x[], int y[]) | |
{ /* plot quadratic spline, destroys input arrays x,y */ | |
#define M_MAX 6 | |
float mi = 1, m[M_MAX]; /* diagonal constants of matrix */ | |
int i, x0, y0, x1, y1, x2 = x[n], y2 = y[n]; | |
assert(n > 1); /* need at least 3 points P[0]..P[n] */ | |
x[1] = x0 = 8*x[1]-2*x[0]; /* first row of matrix */ | |
y[1] = y0 = 8*y[1]-2*y[0]; | |
for (i = 2; i < n; i++) { /* forward sweep */ | |
if (i-2 < M_MAX) m[i-2] = mi = 1.0/(6.0-mi); | |
x[i] = x0 = floor(8*x[i]-x0*mi+0.5); /* store yi */ | |
y[i] = y0 = floor(8*y[i]-y0*mi+0.5); | |
} | |
x1 = floor((x0-2*x2)/(5.0-mi)+0.5); /* correction last row */ | |
y1 = floor((y0-2*y2)/(5.0-mi)+0.5); | |
for (i = n-2; i > 0; i--) { /* back substitution */ | |
if (i <= M_MAX) mi = m[i-1]; | |
x0 = floor((x[i]-x1)*mi+0.5); /* next corner */ | |
y0 = floor((y[i]-y1)*mi+0.5); | |
plotQuadBezier((x0+x1)/2,(y0+y1)/2, x1,y1, x2,y2); | |
x2 = (x0+x1)/2; x1 = x0; | |
y2 = (y0+y1)/2; y1 = y0; | |
} | |
plotQuadBezier(x[0],y[0], x1,y1, x2,y2); | |
} | |
void plotCubicSpline(int n, int x[], int y[]) | |
{ /* plot cubic spline, destroys input arrays x,y */ | |
#define M_MAX 6 | |
float mi = 0.25, m[M_MAX]; /* diagonal constants of matrix */ | |
int x3 = x[n-1], y3 = y[n-1], x4 = x[n], y4 = y[n]; | |
int i, x0, y0, x1, y1, x2, y2; | |
assert(n > 2); /* need at least 4 points P[0]..P[n] */ | |
x[1] = x0 = 12*x[1]-3*x[0]; /* first row of matrix */ | |
y[1] = y0 = 12*y[1]-3*y[0]; | |
for (i = 2; i < n; i++) { /* foreward sweep */ | |
if (i-2 < M_MAX) m[i-2] = mi = 0.25/(2.0-mi); | |
x[i] = x0 = floor(12*x[i]-2*x0*mi+0.5); | |
y[i] = y0 = floor(12*y[i]-2*y0*mi+0.5); | |
} | |
x2 = floor((x0-3*x4)/(7-4*mi)+0.5); /* correct last row */ | |
y2 = floor((y0-3*y4)/(7-4*mi)+0.5); | |
plotCubicBezier(x3,y3, (x2+x4)/2,(y2+y4)/2, x4,y4, x4,y4); | |
if (n-3 < M_MAX) mi = m[n-3]; | |
x1 = floor((x[n-2]-2*x2)*mi+0.5); | |
y1 = floor((y[n-2]-2*y2)*mi+0.5); | |
for (i = n-3; i > 0; i--) { /* back substitution */ | |
if (i <= M_MAX) mi = m[i-1]; | |
x0 = floor((x[i]-2*x1)*mi+0.5); | |
y0 = floor((y[i]-2*y1)*mi+0.5); | |
x4 = floor((x0+4*x1+x2+3)/6.0); /* reconstruct P[i] */ | |
y4 = floor((y0+4*y1+y2+3)/6.0); | |
plotCubicBezier(x4,y4, | |
floor((2*x1+x2)/3+0.5),floor((2*y1+y2)/3+0.5), | |
floor((x1+2*x2)/3+0.5),floor((y1+2*y2)/3+0.5), | |
x3,y3); | |
x3 = x4; y3 = y4; x2 = x1; y2 = y1; x1 = x0; y1 = y0; | |
} | |
x0 = x[0]; x4 = floor((3*x0+7*x1+2*x2+6)/12.0); /* reconstruct P[1] */ | |
y0 = y[0]; y4 = floor((3*y0+7*y1+2*y2+6)/12.0); | |
plotCubicBezier(x4,y4, floor((2*x1+x2)/3+0.5),floor((2*y1+y2)/3+0.5), | |
floor((x1+2*x2)/3+0.5),floor((y1+2*y2)/3+0.5), x3,y3); | |
plotCubicBezier(x0,y0, x0,y0, (x0+x1)/2,(y0+y1)/2, x4,y4); | |
} |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment