Skip to content

Instantly share code, notes, and snippets.

@lynzrand
Forked from proosyue/IITC plugin: S2 cell
Last active November 18, 2022 04:32
Show Gist options
  • Save lynzrand/df574421339711f98db4c189ace62b8b to your computer and use it in GitHub Desktop.
Save lynzrand/df574421339711f98db4c189ace62b8b to your computer and use it in GitHub Desktop.
IITC plugin: S2 cell
// ==UserScript==
// @id iitc-plugin-s2cells@ny
// @name IITC plugin: S2 cell (VIP道館-藍,道館-紅,補給站-黃)
// @author ny
// @category Layer
// @version 0.1.7
// @namespace https://github.com/alvin853/s2cells
// @updateURL https://raw.githubusercontent.com/alvin853/s2cells/master/s2cells.meta.js
// @downloadURL https://raw.githubusercontent.com/alvin853/s2cells/master/s2cells.user.js
// @description IITC: Shows various S2 cells on the map
// @include https://intel.ingress.com/*
// @grant none
// ==/UserScript==
// This plugin is a simple fork of the Regions plugin by Jonatkins
//
// original plugin at:
// https://github.com/jonatkins/ingress-intel-total-conversion
function wrapper(plugin_info) {
// ensure plugin framework is there, even if iitc is not yet loaded
if(typeof window.plugin !== 'function') window.plugin = function() {};
// PLUGIN START ////////////////////////////////////////////////////////
// use own namespace for plugin
window.plugin.s2cells = function() {};
window.plugin.s2cells.setup = function() {
/// S2 Geometry functions
// the regional scoreboard is based on a level 6 S2 Cell
// - https://docs.google.com/presentation/d/1Hl4KapfAENAOf4gv-pSngKwvS_jwNVHRPZTTDzXXn6Q/view?pli=1#slide=id.i22
// at the time of writing there's no actual API for the intel map to retrieve scoreboard data,
// but it's still useful to plot the score cells on the intel map
// the S2 geometry is based on projecting the earth sphere onto a cube, with some scaling of face coordinates to
// keep things close to approximate equal area for adjacent cells
// to convert a lat,lng into a cell id:
// - convert lat,lng to x,y,z
// - convert x,y,z into face,u,v
// - u,v scaled to s,t with quadratic formula
// - s,t converted to integer i,j offsets
// - i,j converted to a position along a Hubbert space-filling curve
// - combine face,position to get the cell id
//NOTE: compared to the google S2 geometry library, we vary from their code in the following ways
// - cell IDs: they combine face and the hilbert curve position into a single 64 bit number. this gives efficient space
// and speed. javascript doesn't have appropriate data types, and speed is not cricical, so we use
// as [face,[bitpair,bitpair,...]] instead
// - i,j: they always use 30 bits, adjusting as needed. we use 0 to (1<<level)-1 instead
// (so GetSizeIJ for a cell is always 1)
(function() {
window.S2 = {};
var LatLngToXYZ = function(latLng) {
var d2r = Math.PI/180.0;
var phi = latLng.lat*d2r;
var theta = latLng.lng*d2r;
var cosphi = Math.cos(phi);
return [Math.cos(theta)*cosphi, Math.sin(theta)*cosphi, Math.sin(phi)];
};
var XYZToLatLng = function(xyz) {
var r2d = 180.0/Math.PI;
var lat = Math.atan2(xyz[2], Math.sqrt(xyz[0]*xyz[0]+xyz[1]*xyz[1]));
var lng = Math.atan2(xyz[1], xyz[0]);
return L.latLng(lat*r2d, lng*r2d);
};
var largestAbsComponent = function(xyz) {
var temp = [Math.abs(xyz[0]), Math.abs(xyz[1]), Math.abs(xyz[2])];
if (temp[0] > temp[1]) {
if (temp[0] > temp[2]) {
return 0;
} else {
return 2;
}
} else {
if (temp[1] > temp[2]) {
return 1;
} else {
return 2;
}
}
};
var faceXYZToUV = function(face,xyz) {
var u,v;
switch (face) {
case 0: u = xyz[1]/xyz[0]; v = xyz[2]/xyz[0]; break;
case 1: u = -xyz[0]/xyz[1]; v = xyz[2]/xyz[1]; break;
case 2: u = -xyz[0]/xyz[2]; v = -xyz[1]/xyz[2]; break;
case 3: u = xyz[2]/xyz[0]; v = xyz[1]/xyz[0]; break;
case 4: u = xyz[2]/xyz[1]; v = -xyz[0]/xyz[1]; break;
case 5: u = -xyz[1]/xyz[2]; v = -xyz[0]/xyz[2]; break;
default: throw {error: 'Invalid face'};
}
return [u,v];
};
var XYZToFaceUV = function(xyz) {
var face = largestAbsComponent(xyz);
if (xyz[face] < 0) {
face += 3;
}
uv = faceXYZToUV (face,xyz);
return [face, uv];
};
var FaceUVToXYZ = function(face,uv) {
var u = uv[0];
var v = uv[1];
switch (face) {
case 0: return [ 1, u, v];
case 1: return [-u, 1, v];
case 2: return [-u,-v, 1];
case 3: return [-1,-v,-u];
case 4: return [ v,-1,-u];
case 5: return [ v, u,-1];
default: throw {error: 'Invalid face'};
}
};
var STToUV = function(st) {
var singleSTtoUV = function(st) {
if (st >= 0.5) {
return (1/3.0) * (4*st*st - 1);
} else {
return (1/3.0) * (1 - (4*(1-st)*(1-st)));
}
};
return [singleSTtoUV(st[0]), singleSTtoUV(st[1])];
};
var UVToST = function(uv) {
var singleUVtoST = function(uv) {
if (uv >= 0) {
return 0.5 * Math.sqrt (1 + 3*uv);
} else {
return 1 - 0.5 * Math.sqrt (1 - 3*uv);
}
};
return [singleUVtoST(uv[0]), singleUVtoST(uv[1])];
};
var STToIJ = function(st,order) {
var maxSize = (1<<order);
var singleSTtoIJ = function(st) {
var ij = Math.floor(st * maxSize);
return Math.max(0, Math.min(maxSize-1, ij));
};
return [singleSTtoIJ(st[0]), singleSTtoIJ(st[1])];
};
var IJToST = function(ij,order,offsets) {
var maxSize = (1<<order);
return [
(ij[0]+offsets[0])/maxSize,
(ij[1]+offsets[1])/maxSize
];
};
// hilbert space-filling curve
// based on http://blog.notdot.net/2009/11/Damn-Cool-Algorithms-Spatial-indexing-with-Quadtrees-and-Hilbert-Curves
// note: rather then calculating the final integer hilbert position, we just return the list of quads
// this ensures no precision issues whth large orders (S3 cell IDs use up to 30), and is more
// convenient for pulling out the individual bits as needed later
var pointToHilbertQuadList = function(x,y,order) {
var hilbertMap = {
'a': [ [0,'d'], [1,'a'], [3,'b'], [2,'a'] ],
'b': [ [2,'b'], [1,'b'], [3,'a'], [0,'c'] ],
'c': [ [2,'c'], [3,'d'], [1,'c'], [0,'b'] ],
'd': [ [0,'a'], [3,'c'], [1,'d'], [2,'d'] ]
};
var currentSquare='a';
var positions = [];
for (var i=order-1; i>=0; i--) {
var mask = 1<<i;
var quad_x = x&mask ? 1 : 0;
var quad_y = y&mask ? 1 : 0;
var t = hilbertMap[currentSquare][quad_x*2+quad_y];
positions.push(t[0]);
currentSquare = t[1];
}
return positions;
};
// S2Cell class
S2.S2Cell = function(){};
//static method to construct
S2.S2Cell.FromLatLng = function(latLng,level) {
var xyz = LatLngToXYZ(latLng);
var faceuv = XYZToFaceUV(xyz);
var st = UVToST(faceuv[1]);
var ij = STToIJ(st,level);
return S2.S2Cell.FromFaceIJ (faceuv[0], ij, level);
};
S2.S2Cell.FromFaceIJ = function(face,ij,level) {
var cell = new S2.S2Cell();
cell.face = face;
cell.ij = ij;
cell.level = level;
return cell;
};
S2.S2Cell.prototype.toString = function() {
return 'F'+this.face+'ij['+this.ij[0]+','+this.ij[1]+']@'+this.level;
};
S2.S2Cell.prototype.getLatLng = function() {
var st = IJToST(this.ij,this.level, [0.5,0.5]);
var uv = STToUV(st);
var xyz = FaceUVToXYZ(this.face, uv);
return XYZToLatLng(xyz);
};
S2.S2Cell.prototype.getCornerLatLngs = function() {
var result = [];
var offsets = [
[ 0.0, 0.0 ],
[ 0.0, 1.0 ],
[ 1.0, 1.0 ],
[ 1.0, 0.0 ]
];
for (var i=0; i<4; i++) {
var st = IJToST(this.ij, this.level, offsets[i]);
var uv = STToUV(st);
var xyz = FaceUVToXYZ(this.face, uv);
result.push ( XYZToLatLng(xyz) );
}
return result;
};
S2.S2Cell.prototype.getFaceAndQuads = function() {
var quads = pointToHilbertQuadList(this.ij[0], this.ij[1], this.level);
return [this.face,quads];
};
S2.S2Cell.prototype.getNeighbors = function() {
var fromFaceIJWrap = function(face,ij,level) {
var maxSize = (1<<level);
if (ij[0]>=0 && ij[1]>=0 && ij[0]<maxSize && ij[1]<maxSize) {
// no wrapping out of bounds
return S2.S2Cell.FromFaceIJ(face,ij,level);
} else {
// the new i,j are out of range.
// with the assumption that they're only a little past the borders we can just take the points as
// just beyond the cube face, project to XYZ, then re-create FaceUV from the XYZ vector
var st = IJToST(ij,level,[0.5,0.5]);
var uv = STToUV(st);
var xyz = FaceUVToXYZ(face,uv);
var faceuv = XYZToFaceUV(xyz);
face = faceuv[0];
uv = faceuv[1];
st = UVToST(uv);
ij = STToIJ(st,level);
return S2.S2Cell.FromFaceIJ (face, ij, level);
}
};
var face = this.face;
var i = this.ij[0];
var j = this.ij[1];
var level = this.level;
return [
fromFaceIJWrap(face, [i-1,j], level),
fromFaceIJWrap(face, [i,j-1], level),
fromFaceIJWrap(face, [i+1,j], level),
fromFaceIJWrap(face, [i,j+1], level)
];
};
})();
window.plugin.s2cells.regionLayer = L.layerGroup();
addLayerGroup('S2 Cells', window.plugin.s2cells.regionLayer, true);
map.on('moveend', window.plugin.s2cells.update);
addHook('search', window.plugin.s2cells.search);
window.plugin.s2cells.update();
};
// rot and d2xy from Wikipedia
window.plugin.s2cells.rot = function(n, x, y, rx, ry) {
if(ry == 0) {
if(rx == 1) {
x = n-1 - x;
y = n-1 - y;
}
return [y, x];
}
return [x, y];
}
window.plugin.s2cells.d2xy = function(n, d) {
var rx, ry, s, t = d, xy = [0, 0];
for(s=1; s<n; s*=2) {
rx = 1 & (t/2);
ry = 1 & (t ^ rx);
xy = window.plugin.s2cells.rot(s, xy[0], xy[1], rx, ry);
xy[0] += s * rx;
xy[1] += s * ry;
t /= 4;
}
return xy;
};
window.plugin.s2cells.update = function() {
window.plugin.s2cells.regionLayer.clearLayers();
var bounds = map.getBounds();
var seenCells = {};
var drawCellAndNeighbors = function(cell, color) {
var cellStr = cell.toString();
if (!seenCells[cellStr]) {
// cell not visited - flag it as visited now
seenCells[cellStr] = true;
// is it on the screen?
var corners = cell.getCornerLatLngs();
var cellBounds = L.latLngBounds([corners[0],corners[1]]).extend(corners[2]).extend(corners[3]);
if (cellBounds.intersects(bounds)) {
// on screen - draw it
window.plugin.s2cells.drawCell(cell, color);
// and recurse to our neighbors
var neighbors = cell.getNeighbors();
for (var i=0; i<neighbors.length; i++) {
drawCellAndNeighbors(neighbors[i], color);
}
}
}
};
// centre cell
var center = map.getCenter();
var zoom = map.getZoom();
const colors = ['red', 'green', 'blue', 'yellow', 'magenta', 'orange']
var cellColor = function (level) {
return colors[level % colors.length]
}
for (let i = 20; i >= zoom; i--) {
var cell = S2.S2Cell.FromLatLng ( center, i );
drawCellAndNeighbors(cell, cellColor(i));
}
// the six cube side boundaries. we cheat by hard-coding the coords as it's simple enough
var latLngs = [ [45,-180], [35.264389682754654,-135], [35.264389682754654,-45], [35.264389682754654,45], [35.264389682754654,135], [45,180]];
var globalCellOptions = {color: 'red', weight: 7, opacity: 0.5, clickable: false };
for (var i=0; i<latLngs.length-1; i++) {
// the geodesic line code can't handle a line/polyline spanning more than (or close to?) 180 degrees, so we draw
// each segment as a separate line
var poly1 = L.geodesicPolyline ( [latLngs[i], latLngs[i+1]], globalCellOptions );
window.plugin.s2cells.regionLayer.addLayer(poly1);
//southern mirror of the above
var poly2 = L.geodesicPolyline ( [[-latLngs[i][0],latLngs[i][1]], [-latLngs[i+1][0], latLngs[i+1][1]]], globalCellOptions );
window.plugin.s2cells.regionLayer.addLayer(poly2);
}
// and the north-south lines. no need for geodesic here
for (var i=-135; i<=135; i+=90) {
var poly = L.polyline ( [[35.264389682754654,i], [-35.264389682754654,i]], globalCellOptions );
window.plugin.s2cells.regionLayer.addLayer(poly);
}
}
window.plugin.s2cells.drawCell = function(cell, color) {
//TODO: move to function - then call for all cells on screen
// corner points
var corners = cell.getCornerLatLngs();
// center point
var center = cell.getLatLng();
// the level 6 cells have noticible errors with non-geodesic lines - and the larger level 4 cells are worse
// NOTE: we only draw two of the edges. as we draw all cells on screen, the other two edges will either be drawn
// from the other cell, or be off screen so we don't care
var region = L.geodesicPolyline([corners[0],corners[1],corners[2]], {fill: false, color: color, opacity: 0.5, weight: 5*3/(cell.level-9), clickable: false });
window.plugin.s2cells.regionLayer.addLayer(region);
// move the label if we're at a high enough zoom level and it's off screen
if (map.getZoom() >= 9) {
var namebounds = map.getBounds().pad(-0.1); // pad 10% inside the screen bounds
if (!namebounds.contains(center)) {
// name is off-screen. pull it in so it's inside the bounds
var newlat = Math.max(Math.min(center.lat, namebounds.getNorth()), namebounds.getSouth());
var newlng = Math.max(Math.min(center.lng, namebounds.getEast()), namebounds.getWest());
var newpos = L.latLng(newlat,newlng);
// ensure the new position is still within the same cell
var newposcell = S2.S2Cell.FromLatLng ( newpos, 6 );
if ( newposcell.toString() == cell.toString() ) {
center=newpos;
}
// else we leave the name where it was - offscreen
}
}
};
var setup = window.plugin.s2cells.setup;
// PLUGIN END //////////////////////////////////////////////////////////
setup.info = plugin_info; //add the script info data to the function as a property
if(!window.bootPlugins) window.bootPlugins = [];
window.bootPlugins.push(setup);
// if IITC has already booted, immediately run the 'setup' function
if(window.iitcLoaded && typeof setup === 'function') setup();
} // wrapper end
// inject code into site context
var script = document.createElement('script');
var info = {};
if (typeof GM_info !== 'undefined' && GM_info && GM_info.script) info.script = { version: GM_info.script.version, name: GM_info.script.name, description: GM_info.script.description };
script.appendChild(document.createTextNode('('+ wrapper +')('+JSON.stringify(info)+');'));
(document.body || document.head || document.documentElement).appendChild(script);
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment