Created
April 19, 2023 06:08
-
-
Save lynzrand/e16b6341499da79948cff273674ff5a0 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
import PIL | |
import PIL.Image | |
import PIL.ImageDraw | |
import numpy as np | |
import tqdm | |
image_in = "image_in.png" | |
def sample_pixel(image: PIL.Image.Image, x, y): | |
""" | |
Sample a pixel from an image, with a cost function. | |
If `x` and `y` are integers, this function returns the value of the pixel at | |
that location. If they are floats, it returns the maximum of the four pixels | |
surrounding the point. | |
""" | |
if x < 0 or y < 0 or x >= image.width or y >= image.height: | |
return None | |
if x == int(x) and y == int(y): | |
return image.getpixel((x, y)) | |
x0 = int(x) | |
x1 = x0 + 1 | |
y0 = int(y) | |
y1 = y0 + 1 | |
return max( | |
image.getpixel((x0, y0)), | |
image.getpixel((x0, y1)), | |
image.getpixel((x1, y0)), | |
image.getpixel((x1, y1)), | |
) | |
def integrate_along(image: PIL.Image.Image, start, end, color_to_value): | |
""" | |
Integrate along a line from start to end, with a cost function. | |
This function is actually a numeric approximation of the integral by sampling | |
the image along the line at 0.5px intervals and summing the results. | |
""" | |
x0, y0 = start | |
x1, y1 = end | |
dx = x1 - x0 | |
dy = y1 - y0 | |
length = np.sqrt(dx * dx + dy * dy) | |
if length == 0: | |
return 0 | |
dx /= length | |
dy /= length | |
total = 0 | |
for i in range(int(length * 2)): | |
x = x0 + dx * i / 2 | |
y = y0 + dy * i / 2 | |
value = sample_pixel(image, x, y) | |
if value is None: | |
continue | |
total += color_to_value(value) | |
return total | |
def pick_next_line(image: PIL.Image.Image, n: int): | |
""" | |
Pick the next line to draw. | |
- Generate `n` random lines, whose start and end points are also random within | |
the image. | |
- For each line, calculate the integral of darkness (1-brightness) along the | |
line. | |
- Return the line with the highest integral. | |
""" | |
best_integral = 0 | |
best_line = None | |
for _ in range(n): | |
x0 = np.random.uniform(0, image.width - 1) | |
y0 = np.random.uniform(0, image.height - 1) | |
x1 = np.random.uniform(0, image.width - 1) | |
y1 = np.random.uniform(0, image.height - 1) | |
integral = integrate_along( | |
image, | |
(x0, y0), | |
(x1, y1), | |
lambda color: 1 - color / 255, | |
) | |
# Penaltize lines that are too long | |
integral /= (x1 - x0)**2 + (y1 - y0)**2 | |
if integral > best_integral: | |
best_integral = integral | |
best_line = (x0, y0), (x1, y1) | |
return best_line | |
lines = [] | |
image = PIL.Image.open(image_in) | |
image = image.convert("L") | |
for _ in tqdm.tqdm(range(4000), "find line"): | |
line = pick_next_line(image, 10) | |
lines.append(line) | |
image_out = PIL.Image.new("RGB", image.size, "white") | |
draw = PIL.ImageDraw.Draw(image_out) | |
for line in tqdm.tqdm(lines, "draw lines"): | |
draw.line(line, fill="black", width=1) | |
image_out.save("image_out.png") |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment