-
-
Save lzbgt/2a6b4c3ab17f1ca347723974966ccb26 to your computer and use it in GitHub Desktop.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
from gensim import models | |
sentence = models.doc2vec.LabeledSentence( | |
words=[u'so`bme', u'words', u'here'], tags=["SENT_0"]) | |
sentence1 = models.doc2vec.LabeledSentence( | |
words=[u'here', u'we', u'go'], tags=["SENT_1"]) | |
sentences = [sentence, sentence1] | |
class LabeledLineSentence(object): | |
def __init__(self, filename): | |
self.filename = filename | |
def __iter__(self): | |
for uid, line in enumerate(open(filename)): | |
yield LabeledSentence(words=line.split(), labels=['SENT_%s' % uid]) | |
model = models.Doc2Vec(alpha=.025, min_alpha=.025, min_count=1) | |
model.build_vocab(sentences) | |
for epoch in range(10): | |
model.train(sentences) | |
model.alpha -= 0.002 # decrease the learning rate` | |
model.min_alpha = model.alpha # fix the learning rate, no decay | |
model.save("my_model.doc2vec") | |
model_loaded = models.Doc2Vec.load('my_model.doc2vec') | |
print model.docvecs.most_similar(["SENT_0"]) | |
print model_loaded.docvecs.most_similar(["SENT_1"]) |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment