Created
January 20, 2020 08:41
-
-
Save lzhbrian/75dd7e58444c4469b4b341d36b0cc09b to your computer and use it in GitHub Desktop.
generate interpolation video from stylegan2
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
Author: lzhbrian (https://lzhbrian.me) | |
Date: 2020.1.20 | |
Note: mainly modified from: https://github.com/tkarras/progressive_growing_of_gans/blob/master/util_scripts.py#L50 | |
""" | |
import numpy as np | |
from PIL import Image | |
import os | |
import scipy | |
import pickle | |
import moviepy | |
import dnnlib | |
import dnnlib.tflib as tflib | |
from tqdm import tqdm | |
tflib.init_tf() | |
fpath = '/nvme/linziheng/projects/stylegan2/results/20200118-stylegan2-all_valid_img_plain_15-8gpu-config-f/network-snapshot-006316.pkl' | |
with open(fpath, 'rb') as stream: | |
_G, _D, Gs = pickle.load(stream, encoding='latin1') | |
fmt = dict(func=tflib.convert_images_to_uint8, nchw_to_nhwc=True) | |
def create_image_grid(images, grid_size=None): | |
assert images.ndim == 3 or images.ndim == 4 | |
num, img_w, img_h = images.shape[0], images.shape[-1], images.shape[-2] | |
if grid_size is not None: | |
grid_w, grid_h = tuple(grid_size) | |
else: | |
grid_w = max(int(np.ceil(np.sqrt(num))), 1) | |
grid_h = max((num - 1) // grid_w + 1, 1) | |
grid = np.zeros(list(images.shape[1:-2]) + [grid_h * img_h, grid_w * img_w], dtype=images.dtype) | |
for idx in range(num): | |
x = (idx % grid_w) * img_w | |
y = (idx // grid_w) * img_h | |
grid[..., y : y + img_h, x : x + img_w] = images[idx] | |
return grid | |
def generate_interpolation_video(truncation_psi=0.5, | |
grid_size=[1,1], image_shrink=1, image_zoom=1, | |
duration_sec=60.0, smoothing_sec=1.0, | |
mp4='test-lerp.mp4', mp4_fps=30, | |
mp4_codec='libx264', mp4_bitrate='16M', | |
random_seed=1000): | |
num_frames = int(np.rint(duration_sec * mp4_fps)) | |
random_state = np.random.RandomState(random_seed) | |
print('Generating latent vectors...') | |
shape = [num_frames, np.prod(grid_size)] + Gs.input_shape[1:] # [frame, image, channel, component] | |
all_latents = random_state.randn(*shape).astype(np.float32) | |
all_latents = scipy.ndimage.gaussian_filter(all_latents, [smoothing_sec * mp4_fps] + [0] * len(Gs.input_shape), mode='wrap') | |
all_latents /= np.sqrt(np.mean(np.square(all_latents))) | |
# Frame generation func for moviepy. | |
def make_frame(t): | |
frame_idx = int(np.clip(np.round(t * mp4_fps), 0, num_frames - 1)) | |
latents = all_latents[frame_idx] | |
labels = np.zeros([latents.shape[0], 0], np.float32) | |
images = Gs.run(latents, None, truncation_psi=truncation_psi, randomize_noise=False, output_transform=fmt) | |
images = images.transpose(0, 3, 1, 2) #NHWC -> NCHW | |
grid = create_image_grid(images, grid_size).transpose(1, 2, 0) # HWC | |
if image_zoom > 1: | |
grid = scipy.ndimage.zoom(grid, [image_zoom, image_zoom, 1], order=0) | |
if grid.shape[2] == 1: | |
grid = grid.repeat(3, 2) # grayscale => RGB | |
return grid | |
# Generate video. | |
import moviepy.editor # pip install moviepy | |
c = moviepy.editor.VideoClip(make_frame, duration=duration_sec) | |
c.write_videofile(mp4, fps=mp4_fps, codec=mp4_codec, bitrate=mp4_bitrate) | |
return c | |
generate_interpolation_video() |
What version of python/tensorflow does this use? I have tried to install by installing parent dependencies found on parent code, but run into issues., indicating wrong tensorflow version is being invoked
It’s python3.6 with tf 1.13 or tf1.12 or tf1.10, I can’t remember that precisely. If your environment can run the original stylegan/stylegan2 correctly, then it shall also run this code correctly.
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
What version of python/tensorflow does this use? I have tried to install by installing parent dependencies found on parent code, but run into issues., indicating wrong tensorflow version is being invoked