Last active
February 6, 2024 03:20
-
-
Save lzhbrian/bde87ab23b499dd02ba4f588258f57d5 to your computer and use it in GitHub Desktop.
face alignment with FFHQ method (https://github.com/NVlabs/ffhq-dataset)
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
""" | |
brief: face alignment with FFHQ method (https://github.com/NVlabs/ffhq-dataset) | |
author: lzhbrian (https://lzhbrian.me) | |
date: 2020.1.5 | |
note: code is heavily borrowed from | |
https://github.com/NVlabs/ffhq-dataset | |
http://dlib.net/face_landmark_detection.py.html | |
requirements: | |
apt install cmake | |
conda install Pillow numpy scipy | |
pip install dlib | |
# download face landmark model from: | |
# http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2 | |
""" | |
import numpy as np | |
import PIL | |
import PIL.Image | |
import sys | |
import os | |
import glob | |
import scipy | |
import scipy.ndimage | |
import dlib | |
# download model from: http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2 | |
predictor = dlib.shape_predictor('./shape_predictor_68_face_landmarks.dat') | |
def get_landmark(filepath): | |
"""get landmark with dlib | |
:return: np.array shape=(68, 2) | |
""" | |
detector = dlib.get_frontal_face_detector() | |
img = dlib.load_rgb_image(filepath) | |
dets = detector(img, 1) | |
print("Number of faces detected: {}".format(len(dets))) | |
for k, d in enumerate(dets): | |
print("Detection {}: Left: {} Top: {} Right: {} Bottom: {}".format( | |
k, d.left(), d.top(), d.right(), d.bottom())) | |
# Get the landmarks/parts for the face in box d. | |
shape = predictor(img, d) | |
print("Part 0: {}, Part 1: {} ...".format(shape.part(0), shape.part(1))) | |
t = list(shape.parts()) | |
a = [] | |
for tt in t: | |
a.append([tt.x, tt.y]) | |
lm = np.array(a) | |
# lm is a shape=(68,2) np.array | |
return lm | |
def align_face(filepath): | |
""" | |
:param filepath: str | |
:return: PIL Image | |
""" | |
lm = get_landmark(filepath) | |
lm_chin = lm[0 : 17] # left-right | |
lm_eyebrow_left = lm[17 : 22] # left-right | |
lm_eyebrow_right = lm[22 : 27] # left-right | |
lm_nose = lm[27 : 31] # top-down | |
lm_nostrils = lm[31 : 36] # top-down | |
lm_eye_left = lm[36 : 42] # left-clockwise | |
lm_eye_right = lm[42 : 48] # left-clockwise | |
lm_mouth_outer = lm[48 : 60] # left-clockwise | |
lm_mouth_inner = lm[60 : 68] # left-clockwise | |
# Calculate auxiliary vectors. | |
eye_left = np.mean(lm_eye_left, axis=0) | |
eye_right = np.mean(lm_eye_right, axis=0) | |
eye_avg = (eye_left + eye_right) * 0.5 | |
eye_to_eye = eye_right - eye_left | |
mouth_left = lm_mouth_outer[0] | |
mouth_right = lm_mouth_outer[6] | |
mouth_avg = (mouth_left + mouth_right) * 0.5 | |
eye_to_mouth = mouth_avg - eye_avg | |
# Choose oriented crop rectangle. | |
x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1] | |
x /= np.hypot(*x) | |
x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8) | |
y = np.flipud(x) * [-1, 1] | |
c = eye_avg + eye_to_mouth * 0.1 | |
quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y]) | |
qsize = np.hypot(*x) * 2 | |
# read image | |
img = PIL.Image.open(filepath) | |
output_size=1024 | |
transform_size=4096 | |
enable_padding=True | |
# Shrink. | |
shrink = int(np.floor(qsize / output_size * 0.5)) | |
if shrink > 1: | |
rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink))) | |
img = img.resize(rsize, PIL.Image.ANTIALIAS) | |
quad /= shrink | |
qsize /= shrink | |
# Crop. | |
border = max(int(np.rint(qsize * 0.1)), 3) | |
crop = (int(np.floor(min(quad[:,0]))), int(np.floor(min(quad[:,1]))), int(np.ceil(max(quad[:,0]))), int(np.ceil(max(quad[:,1])))) | |
crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]), min(crop[3] + border, img.size[1])) | |
if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]: | |
img = img.crop(crop) | |
quad -= crop[0:2] | |
# Pad. | |
pad = (int(np.floor(min(quad[:,0]))), int(np.floor(min(quad[:,1]))), int(np.ceil(max(quad[:,0]))), int(np.ceil(max(quad[:,1])))) | |
pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0), max(pad[3] - img.size[1] + border, 0)) | |
if enable_padding and max(pad) > border - 4: | |
pad = np.maximum(pad, int(np.rint(qsize * 0.3))) | |
img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect') | |
h, w, _ = img.shape | |
y, x, _ = np.ogrid[:h, :w, :1] | |
mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w-1-x) / pad[2]), 1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h-1-y) / pad[3])) | |
blur = qsize * 0.02 | |
img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0) | |
img += (np.median(img, axis=(0,1)) - img) * np.clip(mask, 0.0, 1.0) | |
img = PIL.Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB') | |
quad += pad[:2] | |
# Transform. | |
img = img.transform((transform_size, transform_size), PIL.Image.QUAD, (quad + 0.5).flatten(), PIL.Image.BILINEAR) | |
if output_size < transform_size: | |
img = img.resize((output_size, output_size), PIL.Image.ANTIALIAS) | |
# Save aligned image. | |
return img |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment