Skip to content

Instantly share code, notes, and snippets.

@m-klasen
Forked from caiofcm/supervisely2coco.py
Last active March 31, 2021 08:31
Show Gist options
  • Save m-klasen/e6e9333732e4afabf9ce108a805db389 to your computer and use it in GitHub Desktop.
Save m-klasen/e6e9333732e4afabf9ce108a805db389 to your computer and use it in GitHub Desktop.
Converting Supervisely output to COCO format for bitmaps and polygons
##
# Author: Caio Marcellos
# Email: [email protected]
##
import os
import numpy as np
import json
import glob
from datetime import datetime
from pathlib import Path
import argparse
import sys
from pycocotools import mask as pymask
import base64
from enum import Enum
import zlib
import io
import cv2
"""
Converting from suvervisely to COCO Format (only detection (bbox) tested in this version)
Example of Usage from commandline:
`py supervisely2coco.py meta.json './ds/ann/' formatted2.json `
"""
def convert_supervisely_to_coco(meta_path,
ann_base_dir = './ds/ann/', save_as=None,
only_img_name=False
):
"""
- ann_base_dir: directory for annotation files
- Annotation files are expected to be <image-filename>.json
- save_as: if defined (not None) is a path to save the COCO generated json format
- bbox outputted as BoxMode.XYWH_ABS
TODO:
- tags: e.g train, val
- Segmentation, for now just converting the bbox (for detection)
"""
ann_fnames, ann_jsons = get_all_ann_file(ann_base_dir)
map_category = get_categories_from_meta(meta_path)
catg_repr = [{
"id": v,
"name": k,
"supercategory": "type"
} for k,v in map_category.items()]
out_cnv_imgs = [
convert_single_image(id_img, ann_fnames[id_img], ann_jsons[id_img],
map_category, ann_base_dir, only_img_name)
for id_img in range(len(ann_fnames))
]
images_repr = [o[0] for o in out_cnv_imgs]
ann_repr = [o[1] for o in out_cnv_imgs]
# Flatten annotation (len(images) to len(all-annotations))
ann_repr_flatten = [inner for lst in ann_repr for inner in lst]
# Adjust Annotations ID:
for i, ann in enumerate(ann_repr_flatten):
ann['id'] = i
coco_fmt = {
"info": {
"year": datetime.now().strftime('%Y'),
"version": "1",
"description": "",
"contributor": "converted from supervisely2coco - caiofcm",
"url": "",
"date_created": datetime.now().strftime("%m/%d/%Y, %H:%M:%S")
},
"images": images_repr,
"annotations": ann_repr_flatten,
"licenses": [
{
"id": 1,
"name": "Unknown",
"url": ""
}
],
"categories": catg_repr
}
if save_as:
with open(save_as, 'w') as fp:
json.dump(coco_fmt, fp, cls=NpEncoder)
return coco_fmt
class NpEncoder(json.JSONEncoder):
def default(self, obj): #pylint: disable=method-hidden
if isinstance(obj, np.integer):
return int(obj)
elif isinstance(obj, np.floating):
return float(obj)
elif isinstance(obj, np.ndarray):
return obj.tolist()
else:
return super(NpEncoder, self).default(obj)
def convert_single_image(idimg, fname_img, json_suprv, map_category, imgs_base_dir, only_img_name=False, start_annotation_id=0):
# output in mode BoxMode.XYWH_ABS
image_base = {
"id": idimg,
"width": json_suprv['size']['width'],
"height": json_suprv['size']['height'],
"file_name": fname_img if not only_img_name else Path(fname_img).name,
"license": 1,
"date_captured": ""
}
objects = [obj for obj in json_suprv['objects'] if obj['classTitle'] != 'bg']
h, w = json_suprv['size']['height'], json_suprv['size']['width']
rles = []
boxes = []
areas = []
for instance in objects:
if instance['geometryType']=='bitmask':
full_mask_img = np.zeros((h,w), dtype=bool)
inst_mask = decode_bitmap_mask(instance['bitmap']['data'])
inst_w,inst_h = inst_mask.shape
id_h,id_w = instance['bitmap']['origin']
full_mask_img[id_w:id_w+inst_w,id_h:id_h+inst_h] = inst_mask
rle = pymask.encode(np.asfortranarray(full_mask_img))
rle['counts'] = rle['counts'].decode('ascii')
rles.append(rle)
boxes.append(pymask.toBbox(rle))
areas.append(pymask.area(rle))
elif instance['geometryType']=='polygon':
full_mask_img = np.zeros((h,w))
interior_mask = np.zeros((h,w))
pts = np.array(instance['points']['exterior']).astype(int)
cv2.fillPoly(full_mask_img, [pts], 1)
if len(instance['points']['interior'])>0:
for inst_pts in instance['points']['interior']:
pts = np.array(inst_pts).astype(int)
cv2.fillPoly(interior_mask, [pts], 1)
full_mask_img -= interior_mask
rle = pymask.encode(np.asfortranarray(full_mask_img.astype(bool)))
rle['counts'] = rle['counts'].decode('ascii')
rles.append(rle)
boxes.append(pymask.toBbox(rle))
areas.append(pymask.area(rle))
ann = [
{
"id": start_annotation_id + i,
"image_id": idimg,
"segmentation": segm,
"area": area,
"bbox": bbox,
"category_id": map_category[obj['classTitle']],
"iscrowd": 0
}
for i, (obj, segm, bbox, area) in enumerate(zip(objects, rles,boxes,areas))
]
return image_base, ann
def decode_bitmap_mask(s):
z = zlib.decompress(base64.b64decode(s))
n = np.frombuffer(z, np.uint8)
imdecoded = cv2.imdecode(n, cv2.IMREAD_UNCHANGED)
if (len(imdecoded.shape) == 3) and (imdecoded.shape[2] >= 4):
mask = imdecoded[:, :, 3].astype(bool) # 4-channel imgs
elif len(imdecoded.shape) == 2:
mask = imdecoded.astype(bool) # flat 2d mask
else:
raise RuntimeError('Wrong internal mask format.')
return mask
def get_all_ann_file(base_dir):
all_ann_files = glob.glob(os.path.join(base_dir, "*.json"))
all_fname_img = [fname[:-5] for fname in all_ann_files]
all_json_ann = []
for json_path in all_ann_files:
with open(json_path) as fs:
json_suprv = json.load(fs)
all_json_ann += [json_suprv]
return all_fname_img, all_json_ann
def get_categories_from_meta(meta_json_path):
with open(meta_json_path) as fs:
json_meta = json.load(fs)
classes = [clss['title'] for clss in json_meta['classes'] if clss['title'] != 'bg']
mapCategories = {c: i for i, c in enumerate(classes)}
return mapCategories
###Test
def case_dev():
coco_fmt = convert_supervisely_to_coco('./meta.json', save_as='formatted_coco.json', only_img_name=True)
pass
def main():
parser = argparse.ArgumentParser(description="""
Supervisely2Coco:
Converting from suvervisely to COCO Format (only detection (bbox) tested in this version)
Example of Usage from commandline:
`py supervisely2coco.py meta.json './ds/ann/' formatted2.json `
""")
parser.add_argument(
"-v",
"--version",
help="display version information",
action="version",
version="Supervisely2Coco {}, Python {}".format('0.0.1', sys.version),
)
parser.add_argument("meta", type=str, help="Meta JSON File")
parser.add_argument("ann_base_dir", type=str, help="Annotations base directory (usually downloaded in './ds/ann/' )")
parser.add_argument("output", type=str, help="Output Coco JSON File")
parser.add_argument('-n', '--only-image-name', action='store_true',
help="Save only the image name (not the full path)")
args = parser.parse_args()
meta = args.meta
ann_base_dir = args.ann_base_dir
save_as = args.output
flag_only_name = args.only_image_name
print('Converting from meta={}; annotations in [{}] to output={}'.format(meta, ann_base_dir, save_as))
coco_fmt = convert_supervisely_to_coco(meta, ann_base_dir=ann_base_dir, save_as=save_as, only_img_name=flag_only_name)
print('Done.')
if __name__ == "__main__":
main()
pass
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment