Created
March 30, 2016 12:57
-
-
Save m-manu/ead58e797ee4844eb438ba6744d563fd to your computer and use it in GitHub Desktop.
Handy R script to train data in 'training.csv' using random forest and predict output using inputs from 'test.csv'
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
trainingCsv <- "./training.csv" | |
testCsv <- "./test.csv" | |
trainingData <- read.csv(trainingCsv) | |
testData <- read.csv(testCsv) | |
numColumns <- dim(trainingData)[2] | |
columnNames <- colnames(trainingData) | |
stopifnot(numColumns == dim(testData)[2] + 1) | |
stopifnot(columnNames[-numColumns] == colnames(testData)) | |
require(randomForest) | |
rf <- | |
randomForest( | |
x = trainingData[,-numColumns], y = as.numeric(unlist(trainingData[outputColumn])), ntree = 100, mtry = 10 | |
) | |
outputColumn <- columnNames[numColumns] | |
testData[outputColumn] <- predict(rf, newdata = testData) | |
View(testData) | |
# varImpPlot(rf) | |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment